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PHY 745 Group Theory
11-11:50 AM  MWF  Olin 102

Plan for Lecture 33:

Introduction to linear Lie groups --
continued

1. Linear Lie group and real Lie algebra

2. Fundamental theorem

3. Examples

Ref.  J. F. Cornwell, Group Theory in 
Physics, Vol I and II, Academic Press (1984)
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Definition of a linear Lie group

1. A linear Lie group is a group
• Each element of the group T forms a 

member of the group T’’ when “multiplied” by 
another member of the group T”=T·T’

• One of the elements of the group is the 
identity  E

• For each element of the group T, there is a 
group member  a group member T-1 such 
that T·T-1=E.

• Associative property: T·(T’·T’’)= (T·T’)·T’’
2. Elements of group form a “topological space”
3. Elements also constitute an “analytic manifold”

Non countable number elements lying in a region 
“near” its identity
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Definition:  Linear Lie group of dimension n
A group G is a linear Lie group of dimension n if it satisfied 
the following four conditions:
1. G must have at least one faithful finite-dimensional 

representation  which defines the notion of distance.

1/2
2

1 1

 having dimension ,  the distance

between two group elements  and '  can be defined:

(

For represent 

Note

, ') ( ) ( ')

( , ') has the foll that owing properties

(i) ( , ') 

m m

jk jk
j k

m

T T

d T T T T

d T T

d T T

 



 
    

 





( ', ) 

(ii) ( , ) = 0

(iii) ( , ')  0   if   '

(iv) For elements  , ',  and '',    

             ( , ') ( , '') ( ', '')

d T T

d T T

d T T T T

T T T

d T T d T T d T T

 

 



4/12/2017

3

4/12/2017 PHY 745  Spring 2017 -- Lecture 33 7

Definition:  Linear Lie group of dimension n   -- continued
2. Consider the distance between group elements T

with respect to the identity E -- d(T,E).   It is possible 
to define a sphere   M that contains all elements T’
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Definition:  Linear Lie group of dimension n   -- continued
3. There must exist
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Some more details
4. There is a requirement that the corresponding 

representation is analytic
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Definition:    Real Lie algebra

A real Lie algebra of dimension 1 is a real vector space

of dimension  which includes a comutator [ , ] as

follows:
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1

Structure constants of Lie algebra

Consider the n basis matrices of , ,... : the algebra 

   for , =1,2 . n[ . , .]
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Example:    G is the group SU(2) of  all 2 2 unitary matrices

having determinant 1   



31 2

0 0 1 01 1 1
         

0 1 0 02 2 2

i i

i i

     
             

a a a

1 2 2 3 1 3 13 2

Structure constants for this case:

[           [            [   , ] , ] ]  ,       a a aa a a a a a

4/12/2017 PHY 745  Spring 2017 -- Lecture 33 12

Fundamental theorem –

For every linear Lie group there exisits a 
corresponding real Lie algebra of the same 
dimension.  For example if the linear Lie group has 
dimension n and has mxm matrices a1, a2,….an then 
these matrices form a basis for the real Lie algebra.
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One-parameter subgroup of a linear Lie group

A "one-parameter subgroup" of a linear Lie group 

fullfills the requirements of a Lie group as a subgroup

whose elements ( ) depend on a real parameter 
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0

Theorem:    Every one-parameter subgroup of a linear Lie
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Correspondence between each linear Lie group G and 
a real Lie algebra L    Simplify the consideration to G
consisting of mxm matrices T=A and (T)=A.

 

1 2 1 2

As part of the definition of the linear Lie group, there are
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Definition:    Analytic curve in 
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Definition:   Tangent vector of an analytic curve in 

The tangent vector of an analytic curve ( ) in  is defin
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Theorem        The tangent vector of any analytic curve in  is a 

member of the real vector space hav

, ,..... as its basis.  Conversely, every member

of the re
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Fundamental theorem:      For every linear Lie group  there

exists a corresponding real Lie algebra  of the same dimension.

More precisely, if  has dimenison  then the  matrices 

, ,..   orm.. fn

mn m

a a a

G

 L

G

 a basis for .L

Converse to fundamental theorem:    Every real Lie algebra is 
isomorphic to the real Lie algebra of some linear Lie group.   
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Example:    SO(3)
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