PHY 745 Group Theory
11-11:50 AM  MWF Olin 102

Plan for Lecture 33:

Introduction to linear Lie groups --
continued

1. Linear Lie group and real Lie algebra
2. Fundamental theorem
3. Examples

Ref. J. F. Cornwell, Group Theory in
Physics, Vol | and Il, Academic Press (1984)
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Definition of a linear Lie group

1. Alinear Lie group is a group
« Each element of the group T forms a
member of the group 7~ when “multiplied” by
another member of the group T’=T-T’
* One of the elements of the group is the
identity E
« For each element of the group T, there is a
group member a group member T’ such
that T-T'=E.
« Associative property: T-(T-T")=(T-T)-T”
2. Elements of group form a “topological space”
3. Elements also constitute an “analytic manifold”

=>Non countable number elements lying in a region
“near” its identity
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Definition: Linear Lie group of dimension n
A group G is a linear Lie group of dimension n if it satisfied
the following four conditions:
1. G must have at least one faithful finite-dimensional
representation T which defines the notion of distance.
For represent I" having dimension m, the distance
between two group elements 7 and 7' can be defined:

d(T,T)= {ii\r(n,k —F(T'),k‘z}

Note that d(7',T") has the following properties

i) d(T,T" =d(T",T)

(i) d(1,7)=0

(i) d(T,T") >0 if T#T'

(iv) For elements 7,7, and 7",
d(T,TY<d(T,T"Y+d(T'\T")
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Definition: Linear Lie group of dimension n -- continued
2. Consider the distance between group elements T
with respect to the identity E -- d(T,E). Itis possible
to define a sphere M, that contains all elements T’
such that d(E,T") < J.
It follows that there must exist a 6 > 0 such that every 7'
of G lying in the sphere M can be parameterized by n

real parameters  x,,Xx,,....x, such each 7" has a different

n

set of parameters and for £ the parameters are

x,=0,x,=0,..x,=0
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Definition: Linear Lie group of dimension n -- continued
3. There must exist

7 >0 such that for every parameter set {x, ,xz,“.x“} corresponding
to ' in the sphere M :

n -
Exj 7
=

4. There is a requirement that the corresponding
representation is analytic

For element 7' within M, T'(T'(x,,x,,..x,)) must

be an analytic (polynomial) function of X, x,,....x,.
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Some more details
4. There is a requirement that the corresponding
representation is analytic

For element 7' within M, T'(T'(x,,x,,..x,)) must

be an analytic (polynomial) function of X, x,,....x,,.
Because of the mapping to the n parameters x,, x,...x, to
each group element 7', I'(T"'(x,,x,...x,)) = I'(x,,x,...x,).
The analytic property of I'(x,,x,...x,) also means that
derivatives

0T (X, %,
M must exist for all @ =1,2,...

o

0%x,

Define n m x m matrices:

(a ) _ or , (x,,%,...x,)
Pk ox

P
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Definition: Real Lie algebra

A real Lie algebra of dimension n > 1 is a real vector space
of dimension » which includes a comutator [M, N] as
follows:

1. Forall M,N in algebra, [M,N]is also in algebra

2. For real numbers « and S, and members M, N, O,
[aM + BN,O]=a[M,0]+ B[N,O]

3. [M,N]=-[N,M]

4. [M,[N,O]]+[N,[O,M]]+[O,[M,N]]=0
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Structure constants of Lie algebra

Consider the n basis matrices of the algebra a,,a,,...a, :

[a,.a,]= Zc;qar forp,g=1,2 ...n
r=1

Example: G is the group SU(2) of all 2x 2 unitary matrices
having determinant 1

1(0 i 10 1 1(i O
a == a, == == .

2\i 0 2{-1 0 210 —i
Structure constants for this case:
[alaaz] =—a, [azaaz] =-a; [a3aa1] =-a,
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Fundamental theorem —

For every linear Lie group there exisits a
corresponding real Lie algebra of the same
dimension. For example if the linear Lie group has
dimension n and has mxm matrices a,, a,,....a, then
these matrices form a basis for the real Lie algebra.




One-parameter subgroup of a linear Lie group
A "one-parameter subgroup" of a linear Lie group
fullfills the requirements of a Lie group as a subgroup
whose elements 7'(¢) depend on a real parameter ¢ with
—0<f<o where

TST@)=T(s+1)

Note that 7(s)T (1) = T(t)T(s) so that the subgroup
is Abelian. It follows that 7(t =0)=E

Theorem: Every one-parameter subgroup of a linear Lie
group of m x m matrices is formed by exponentiation of
dA

m x m matrices. A(t)=¢e"
dl t=0

4/12/2017
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Theorem: Every one-parameter subgroup of a linear Lie

group of m x m matrices is formed by exponentiation of

m x m matrices. A(t)=e" :@
dt|,_,
o _ lirp[A(’ +sS>—A<z>): l_irp( A“{MD
=A(t)a
A(t)=e"
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Correspondence between each linear Lie group ¢ and
areal Lie algebra £ Simplify the consideration to ¢
consisting of mxm matrices T=A and I'(T)=A.

As part of the definition of the linear Lie group, there are
7 parameters x,, x,,...x, such that all A(x,,x,,...x,) are
analytic functions of the parameters, and the n mxm
matrices

OA
(ap )jk - a X =xy =3, =0

form the basis of an n-dimensional real vector space.




Definition:  Analytic curve in G
Suppose x,(£),x,(¢)....x, (¢) are analytic functions of

0<¢<¢, within which ijz (t) < n*, then the set

=1
of mxm matrices A(t)=A(x,(¢),x,(?)....x,(¢)) are
said to form an analytic curve in G.

Definition: Tangent vector of an analytic curve in ¢

The tangent vector of an analytic curve A(¢) in G is defined
. dA(t

to be the m x m matrix a:J

1=0
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Theorem The tangent vector of any analytic curve in G is a
member of the real vector space having the matrices
a;,a,,....a, as its basis. Conversely, every member

of the real vector space is the tangent vector of some

analytic curve in G.

Theorem  Ifa and b are the tangent vectors of the analytic curves
A(t) and B(¢) in @, then c=[a,b] is the tangent vector
of the analytic curve C(¢) in ¢, where
-1 -1
€0 =ANDBEO(AND) (BG)
Note that  A(V1) = 1+avf +O(r)
)~ (Ha\/;..‘)(Hb\/;u.)(] —a\/;..)(] 7bx/?.4.)

dC(e)
dt
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Fundamental theorem: ~ For every linear Lie group @ there
exists a corresponding real Lie algebra £ of the same dimension.
More precisely, if ¢ has dimenison n then the m x m matrices

a a,,..a, form a basis for £.

Converse to fundamental theorem: Every real Lie algebra is
isomorphic to the real Lie algebra of some linear Lie group.




Example: SO(3)

In this case, it is convenient to consider rotations about the
3 orthogonal directions:
R(a.B.y) = R(a,))R(B.9)R(y.,2)

1 0 0 cosff 0 sinf)(cosy —sinf -
=0 cosa -sina 0 1 0 sinf cosy O
0 sina cosa J\-sinff 0 cosf 0 0 1
0
o
A Note that
‘ o ot a,a,|]=-a
% =[0 0 0|=-a [a,.2,] 3
apr=0 |1 0 0 [
[aZ’aS]_ a]
A 0 -10
20 of=, [a;,a,]=a,
a0 {0 0 0
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