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PHY 745 Group Theory
11-11:50 AM  MWF  Olin 102

Plan for Lecture 34:

Introduction to linear Lie groups
1. Definitions and properties

2. Comparison with finite groups

3. Usefulness for physics and mathematics

Ref.  J. F. Cornwell, Group Theory in Physics, Vol I 
and II, Academic Press (1984)

Robert Gilmore, Lie Groups, Physics, and 
Geometry, Cambridge U. Press (2008)
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Some comments from Gilmore text:

Marius Sophus Lie (1842-1899) had the vision to use group 
theory to solve, analyze, simplify differential equations by 
exploring relationships between symmetry and group 
theory and related algebraic and geometric structures.   His 
worked followed that of Evariste Galois (1811-1832). 
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Definition of a linear Lie group

1. A linear Lie group is a group
• Each element of the group T forms a 

member of the group T’’ when “multiplied” by 
another member of the group T”=T·T’

• One of the elements of the group is the 
identity  E

• For each element of the group T, there is a 
group member  a group member T-1 such 
that T·T-1=E.

• Associative property: T·(T’·T’’)= (T·T’)·T’’
2. Elements of group form a “topological space”
3. Elements also constitute an “analytic manifold”

Non countable number elements lying in a region 
“near” its identity
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Definition:  Linear Lie group of dimension n
A group G is a linear Lie group of dimension n if it satisfied 
the following four conditions:
1. G must have at least one faithful finite-dimensional 

representation  which defines the notion of distance.
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Definition:  Linear Lie group of dimension n   -- continued
2. Consider the distance between group elements T

with respect to the identity E -- d(T,E).   It is possible 
to define a sphere   M that contains all elements T’
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Definition:  Linear Lie group of dimension n   -- continued
3. There must exist
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Some more details
4. There is a requirement that the corresponding 

representation is analytic
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Definition:    Real Lie algebra

A real Lie algebra of dimension 1 is a real vector space

of dimension  which includes a comutator [ , ] as

follows:
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Generalizations for the notion of distance – choice of 
“metric”.   Here we have chosen the Hilbert-Schmidt 
metric:
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Relationships of finite groups to continuous group – notions 
of “connectedness”

A maximal set of elements  of  that can be obtained
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Example:   O(2) -- 2 2 orthogonal matrices
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Theorem:    The connected component of a linear Lie group 

that contains the identity  is an invariant subgroup of .E
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Example from O(2):
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A linear Lie group is said to be “connected” if it possesses 
only one connected component.
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1 2

Definition

A linear Lie group of dimension  with a finite number of

connected components is compact if the parameters
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With the notion of a compact linear Lie groups, we can 
relate their properties, such as the great orthogonality
theorem, to those of  finite groups. 
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Example:       For (2)
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Other examples –
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