PHY 745 Group Theory 11-11:50 AM MWF Olin 102

Plan for Lecture 36:

- 1. Summary of what we learned about linear Lie groups, especially SO(3) and SU(2), their direct products and Clebsch-Gordan coefficients
- 2. Review of topics in Group Theory
- 3. Course evaluation

Ref. J. F. Cornwell, Group Theory in Physics, Vol I and II, Academic Press (1984)
PHY745 Spring 2017 - Lecture 34

22	Mon: 03/20/2017	Chan 7.7	Jahn-Teller Effect	W15	03/24/2017
	Wed: 03/22/2017	Chap. 7.7	Jahn-Teller Effect	HTS.	00242011
	Fri: 03/24/2017	Ottegr. 7.7	Spin 1/2	#16	03/27/2017
	Mon: 03/27/2017	1	Dirac equation for H-like atoms	#17	03/29/2017
	Wed: 03/29/2017	Chap. 14	Angular momenta	W18	03/31/2017
28	Fri: 03/31/2017	Chap. 16	Time reversal symmetry	#19	04/05/2017
29	Mon: 04/03/2017	Chap. 16	Magnetic point groups		
30	Wed: 04/05/2017	Literature	Topology and group theory in Bloch state	s W20	04/07/2017
31	Fri: 04/07/2017		Introduction to Lie groups	#21	04/10/2017
32	Mon: 04/10/2017	siti	Introduction to Lie groups		
33	Wed: 04/12/2017		Introduction to Lie groups		
	Fri: 04/14/2017		Good Friday Holiday no class		
34	Mon: 04/17/2017		Introduction to Lie groups		
35	Wed: 04/19/2017		Introduction to Lie groups		
36	Fri: 04/21/2017		Introduction to Lie groups		
	Mon: 04/24/2017		Presentations I Jason	and Ar	ımad
	Wed: 04/26/2017		Presentations II Taylor		

DREST	Department of Physics		
	News Visiting Assistant Professor Opening in Physics Part-line Instructor Opening in Physics	Fri. Apr. 21, 2017 Sodium ion Electrolytes Larry Rush, Jr. MS. Defense (Montor: N. Holzwarth) Public Talk: Scales 009 at 12:30 PM Fri. Apr. 21, 2017 SPS Picnic 5:30 PM on Olin Roof (Olin 105, rain alternate)	
4/17/2017	Angela Harper awarded NSF PHY 745 Spring 2017 Lecture 34	3	

1	
1	

Class structure of these groups

$$R(\boldsymbol{\omega},\hat{\mathbf{n}}) = \begin{pmatrix} \cos\omega + n_1^2 \left(1-\cos\omega\right) & n_3\sin\omega + n_1n_2 \left(1-\cos\omega\right) & -n_2\sin\omega + n_1n_3 \left(1-\cos\omega\right) \\ -n_3\sin\omega + n_1n_2 \left(1-\cos\omega\right) & \cos\omega + n_2^2 \left(1-\cos\omega\right) & n_1\sin\omega + n_2n_3 \left(1-\cos\omega\right) \\ n_2\sin\omega + n_1n_3 \left(1-\cos\omega\right) & -n_1\sin\omega + n_2n_3 \left(1-\cos\omega\right) & \cos\omega + n_3^2 \left(1-\cos\omega\right) \end{pmatrix}$$

 $\operatorname{Tr}\left(R(\omega,\hat{\mathbf{n}})\right) = 3\cos\omega + \left(n_1^2 + n_2^2 + n_3^2\right)\left(1 - \cos\omega\right) = 1 + 2\cos\omega \implies \text{depends on } |\omega| \text{ and not on } \hat{\mathbf{n}}$

$$\mathbf{u}(\omega, \hat{\mathbf{n}}) = \begin{pmatrix} \cos\frac{\omega}{2} + in_3 \sin\frac{\omega}{2} & (in_1 + n_2)\sin\frac{\omega}{2} \\ (in_1 - n_2)\sin\frac{\omega}{2} & \cos\frac{\omega}{2} - in_3\sin\frac{\omega}{2} \end{pmatrix}$$

 $\operatorname{Tr}(\mathbf{u}(\omega, \hat{\mathbf{n}})) = 2\cos\frac{\omega}{2}$ depends on $|\omega|$ and not on $\hat{\mathbf{n}}$

4/17/2017

PHY 745 Spring 2017 -- Lecture 34

"Generators" of the groups

$$R(\omega,\hat{\mathbf{n}}) = \begin{pmatrix} \cos\omega + n_1^2 \left(1 - \cos\omega\right) & n_3 \sin\omega + n_1 n_2 \left(1 - \cos\omega\right) & -n_2 \sin\omega + n_1 n_3 \left(1 - \cos\omega\right) \\ -n_3 \sin\omega + n_1 n_2 \left(1 - \cos\omega\right) & \cos\omega + n_2^2 \left(1 - \cos\omega\right) & n_1 \sin\omega + n_2 n_3 \left(1 - \cos\omega\right) \\ n_2 \sin\omega + n_1 n_3 \left(1 - \cos\omega\right) & -n_1 \sin\omega + n_2 n_3 \left(1 - \cos\omega\right) & \cos\omega + n_3^2 \left(1 - \cos\omega\right) \end{pmatrix}$$

$$\mathbf{a} = \lim_{\omega \to 0} \left(\frac{R(\omega, \hat{\mathbf{n}}) - 1}{\omega} \right) = n_1 \mathbf{a}_1 + n_2 \mathbf{a}_2 + n_3 \mathbf{a}_3 = \begin{pmatrix} 0 & n_3 & -n_2 \\ -n_3 & 0 & n_1 \\ n_2 & -n_1 & 0 \end{pmatrix}$$

$$\mathbf{u}(\omega, \hat{\mathbf{n}}) = \begin{pmatrix} \cos\frac{\omega}{2} + in_3 \sin\frac{\omega}{2} & (in_1 + n_2)\sin\frac{\omega}{2} \\ (in_1 - n_2)\sin\frac{\omega}{2} & \cos\frac{\omega}{2} - in_3\sin\frac{\omega}{2} \end{pmatrix}$$

$$\begin{split} \mathbf{u}(\omega,\hat{\mathbf{n}}) &= \begin{pmatrix} \cos\frac{\omega}{2} + in_3\sin\frac{\omega}{2} & (in_1 + n_2)\sin\frac{\omega}{2} \\ (in_1 - n_2)\sin\frac{\omega}{2} & \cos\frac{\omega}{2} - in_3\sin\frac{\omega}{2} \end{pmatrix} \\ \mathbf{a} &= \lim_{\omega \to 0} \left(\frac{\mathbf{u}(\omega,\hat{\mathbf{n}}) - 1}{\omega} \right) = n_1\mathbf{a}_1 + n_2\mathbf{a}_2 + n_3\mathbf{a}_3 = \frac{1}{2} \begin{pmatrix} in_3 & in_1 + n_2 \\ in_1 - n_2 & -in_3 \end{pmatrix} \end{split}$$

4/17/2017

PHY 745 Spring 2017 -- Lecture 34

Irreducible representations of SO(3) and SU(2) -- focusing on SU(2)

Consider the generator matrices

$$\begin{split} \mathbf{a} &= \lim_{\omega \to 0} \left(\frac{\mathbf{u}(\omega, \hat{\mathbf{n}}) - 1}{\omega} \right) = n_1 \mathbf{a}_1 + n_2 \mathbf{a}_2 + n_3 \mathbf{a}_3 = \frac{1}{2} \begin{pmatrix} i n_3 & i n_1 + n_2 \\ i n_1 - n_2 & -i n_3 \end{pmatrix} \\ \mathbf{a}_1 &= \frac{1}{2} \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} \quad \mathbf{a}_2 = \frac{1}{2} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \quad \mathbf{a}_3 = \frac{1}{2} \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} \end{split}$$

$$\mathbf{a}_1 = \frac{1}{2} \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} \qquad \mathbf{a}_2 = \frac{1}{2} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \qquad \mathbf{a}_3 = \frac{1}{2} \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$$

Commutation relations: $[\mathbf{a}_1, \mathbf{a}_2] = -\mathbf{a}_1$

In order to determine irreducible representations of SU(2), determine eigenstates associated with generators.

Eigenfunctions associated with generator functions of SU(2)

$$\mathbf{a}_1 = \frac{1}{2} \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} \qquad \mathbf{a}_2 = \frac{1}{2} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \qquad \mathbf{a}_3 = \frac{1}{2} \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$$

Commutation relations: $[\mathbf{a}_1, \mathbf{a}_2] = -\mathbf{a}_3$

It is convenient to map these generators into Hermitian matrices

$$\mathbf{A}_{p} \equiv -i\mathbf{a}_{p} = \frac{1}{2}\mathbf{\sigma}_{p}$$

$$\mathbf{A}_1 = \frac{1}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$\mathbf{A}_2 = \frac{1}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

$$\mathbf{A}_1 = \frac{1}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad \quad \mathbf{A}_2 = \frac{1}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \qquad \quad \mathbf{A}_3 = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Commutation relations: $[\mathbf{A}_1, \mathbf{A}_2] = i\mathbf{A}_3$

Define
$$\mathbf{A}^2 = \mathbf{A}_1^2 + \mathbf{A}_2^2 + \mathbf{A}_3^2 = \frac{3}{4} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\mathbf{A}_{-} = \mathbf{A}_{1} - i\mathbf{A}_{2} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \qquad \mathbf{A}_{+} = \mathbf{A}_{1} + i\mathbf{A}_{2} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

Eigenfunctions associated with generator functions of SU(2)

Relationships between operators:

$$[\mathbf{A}^2, \mathbf{A}_p] = 0$$

$$\mathbf{A}_{-}\mathbf{A}_{+} = \mathbf{A}^{2} - \mathbf{A}_{3}^{2} - \mathbf{A}_{3}$$

$$\mathbf{A}_{+}\mathbf{A}_{-} = \mathbf{A}^2 - \mathbf{A}_3^2 + \mathbf{A}_3$$

Note that this "algebra" is identical to that of the total angular momentum operators

$$\mathbf{J}_{x}=\hbar\mathbf{A}_{1}$$

$$\mathbf{J}_{v} = \hbar \mathbf{A}_{2}$$

$$\mathbf{J}_z = \hbar \mathbf{A}_3$$

 \Rightarrow Leap to eigenstates of \mathbf{J}^2 and \mathbf{J}_z : $|jm\rangle$

$$\mathbf{A}^2 \left| jm \right\rangle = j(j+1) \left| jm \right\rangle$$

$$\mathbf{A}_{3} |jm\rangle = m|jm\rangle$$

PHY 745 Spring 2017 -- Lecture 34

Eigenfunctions associated with generator functions of SU(2)

Additional relationships:

$$\mathbf{A}_{-} |jm\rangle = \left\{ (j+m)(j-m+1) \right\}^{1/2} |j(m-1)\rangle$$

$$\mathbf{A}_{+} \left| jm \right\rangle = \left\{ \left(j+m \right) \left(j+m+1 \right) \right\}^{1/2} \left| j \left(m+1 \right) \right\rangle$$

Mapping the representations back to the original generators

of SU(2):
$$\mathbf{a}_p = i\mathbf{A}_p$$

$$D_{mm'}^{j}(\mathbf{a}_{p}) \equiv \langle jm | \mathbf{a}_{p} | jm' \rangle$$

$$j=0$$
 $D_{mm'}^{j}(\mathbf{a}_{m})=0$

$$j = \frac{1}{2} \qquad D_{mm'}^{j}(\mathbf{a}_{1}) = \frac{1}{2} \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} \qquad D_{mm'}^{j}(\mathbf{a}_{2}) = \frac{1}{2} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \qquad D_{mm'}^{j}(\mathbf{a}_{3}) = \frac{1}{2} \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$$

Comment of analogous equations for SO(3) --

Eigenfunctions associated with generator functions of SO(3)

$$R(\omega,\hat{\mathbf{n}}) = \begin{pmatrix} \cos\omega + n_1^2 \left(1 - \cos\omega\right) & n_3 \sin\omega + n_1 n_2 \left(1 - \cos\omega\right) & -n_2 \sin\omega + n_1 n_3 \left(1 - \cos\omega\right) \\ -n_3 \sin\omega + n_1 n_2 \left(1 - \cos\omega\right) & \cos\omega + n_2^2 \left(1 - \cos\omega\right) & n_1 \sin\omega + n_2 n_3 \left(1 - \cos\omega\right) \\ n_2 \sin\omega + n_1 n_3 \left(1 - \cos\omega\right) & -n_1 \sin\omega + n_2 n_3 \left(1 - \cos\omega\right) & \cos\omega + n_3^2 \left(1 - \cos\omega\right) \end{pmatrix}$$

$$\mathbf{a} = \lim_{\omega \to 0} \left(\frac{R(\omega, \hat{\mathbf{n}}) - 1}{\omega} \right) = n_1 \mathbf{a}_1 + n_2 \mathbf{a}_2 + n_3 \mathbf{a}_3 = \begin{pmatrix} 0 & n_3 & -n_2 \\ -n_3 & 0 & n_1 \\ n_1 & -n_1 & 0 \end{pmatrix}$$

$$\mathbf{a}_1 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix} \qquad \mathbf{a}_2 = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \qquad \mathbf{a}_3 = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

 $[\mathbf{a}_1, \mathbf{a}_2] = -\mathbf{a}_3$

4/17/2017 PHY 745 Spring 2017 -- Lecture 34

$$\mathbf{a}_1 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix} \qquad \mathbf{a}_2 = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \qquad \mathbf{a}_3 = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Commutation relations: $[\mathbf{a}_1, \mathbf{a}_2] = -\mathbf{a}_3$

It is convenient to map these generators into Hermitian matrices $\mathbf{A}_p \equiv -i\mathbf{a}_p$

$$\mathbf{A}_1 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix} \qquad \mathbf{A}_2 = \begin{pmatrix} 0 & 0 & i \\ 0 & 0 & 0 \\ -i & 0 & 0 \end{pmatrix} \qquad \mathbf{A}_3 = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Commutation relations: $[A_1, A_2] = iA_3$

Define
$$\mathbf{A}^2 = \mathbf{A}_1^2 + \mathbf{A}_2^2 + \mathbf{A}_3^2 = 2 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

4/17/2017

PHY 745 Spring 2017 -- Lecture 34

However, in this case A_3 is not diagonal; using a similarity transformation:

$$\tilde{\mathbf{A}}_3 \equiv U^\dagger \mathbf{A}_3 U = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{-i}{\sqrt{2}} & 0 \\ 0 & 0 & 1 \\ \frac{-i}{\sqrt{2}} & \frac{-i}{\sqrt{2}} & 0 \end{pmatrix} \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{-i}{\sqrt{2}} \\ \frac{i}{\sqrt{2}} & 0 & \frac{i}{\sqrt{2}} \\ 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

$$\tilde{\mathbf{A}}_1 \equiv U^{\dagger} \mathbf{A}_1 U = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{-i}{\sqrt{2}} & 0 \\ 0 & 0 & 1 \\ \frac{1}{\sqrt{2}} & \frac{-i}{\sqrt{2}} & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{-1}{\sqrt{2}} \\ \frac{i}{\sqrt{2}} & 0 & \frac{i}{\sqrt{2}} \\ 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & \frac{-i}{\sqrt{2}} & 0 \\ \frac{i}{\sqrt{2}} & 0 & \frac{-i}{\sqrt{2}} \\ 0 & \frac{i}{\sqrt{2}} & 0 \end{pmatrix}$$

$$\tilde{\mathbf{A}}_2 \equiv U^\dagger \mathbf{A}_2 U = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{-i}{\sqrt{2}} & 0 \\ 0 & 0 & 1 \\ \frac{-1}{\sqrt{2}} & \frac{-i}{\sqrt{2}} & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{-1}{\sqrt{2}} \\ \frac{i}{\sqrt{2}} & 0 & \frac{i}{\sqrt{2}} \\ 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & \frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ 0 & \frac{1}{\sqrt{2}} & 0 \end{pmatrix}$$

In accordance with the usual convention:

$$\mathbf{J}_{z} = \hbar \tilde{\mathbf{A}}_{3}$$
 $\mathbf{J}_{y} = \hbar \tilde{\mathbf{A}}_{1}$ $\mathbf{J}_{x} = \hbar \tilde{\mathbf{A}}_{2}$

4/17/2017

In general, we can form a representation for SU(2) by evaluating $-e^{\omega D'\,(a_3)}:$

The character of this representation is

$$\chi^{j}(\omega) = \sum_{m=-j}^{j} e^{im\omega} = \frac{\sin((j+\frac{1}{2})\omega)}{\sin(\frac{1}{2}\omega)}$$

Direct product of irreducible representations \mathbf{D}^{j_1} and \mathbf{D}^{j_2}

It can be shown that $\mathbf{D}^{j_1 \otimes j_2} = \mathbf{D}^{j_1 + j_2} \oplus \mathbf{D}^{j_1 + j_2 - 1} \mathbf{D}^{[j_1 - j_2]}$ This follows from the character relationships:

$$\chi^{h\otimes J_2}(\omega) = \frac{\sin\left(\left(J_1 + \frac{1}{2}\right)\omega\right)\sin\left(\left(J_2 + \frac{1}{2}\right)\omega\right)}{\sin^2\left(\frac{1}{2}\omega\right)} = \sum_{j=|J_1 - J_2|}^{J_1 + J_2} \chi^{j}(\omega)$$

4/17/2017

Spring 2017 -- Lecture 34

For example: $j_1=1/2$ and $j_2=1/2$

It can be shown that $\mathbf{D}^{j_1\otimes j_2} = \mathbf{D}^{j_1+j_2} \oplus \mathbf{D}^{j_1+j_2-1}....\mathbf{D}^{|j_1-j_2|}$ This follows from the character relationships:

$$\chi^{\scriptscriptstyle 1/2\otimes 1/2}(\omega)=\chi^{\scriptscriptstyle 1}(\omega)\oplus\chi^{\scriptscriptstyle 0}(\omega)$$

$$\begin{split} \left\langle j_{l}m_{l}j_{2}m_{2}\left|j_{l}j_{2}jm\right\rangle &= \left\langle \frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\left|\frac{1}{2}\frac{1}{2}11\right\rangle = 1\\ \left\langle \frac{1}{2}-\frac{1}{2}\frac{1}{2}\frac{1}{2}\left|\frac{1}{2}\frac{1}{2}10\right\rangle &= \left\langle \frac{1}{2}\frac{1}{2}\frac{1}{2}-\frac{1}{2}\left|\frac{1}{2}\frac{1}{2}10\right\rangle = \frac{1}{\sqrt{2}}\\ \left\langle \frac{1}{2}-\frac{1}{2}\frac{1}{2}-\frac{1}{2}\right|\frac{1}{2}\frac{1}{2}1-1\right\rangle &= 1\\ \left\langle \frac{1}{2}-\frac{1}{2}\frac{1}{2}\frac{1}{2}\left|\frac{1}{2}\frac{1}{2}00\right\rangle &= -\left\langle \frac{1}{2}\frac{1}{2}-\frac{1}{2}\left|\frac{1}{2}\frac{1}{2}00\right\rangle = \frac{1}{\sqrt{2}} \end{split}$$

Review --

4/17/2017

PHY 745 Spring 2017 -- Lecture 34

Group theory An abstract algebraic construction in mathematics Definition of a group:

A group is a collection of "elements" $-A,B,C,\ldots$ and a "multiplication" process. The abstract multiplication (\cdot) pairs two group elements, and associates the "result" with a third element. (For example $(A\cdot B=C)$.) The elements and the multiplication process must have the following properties.

- 1. The collection of elements is closed under multiplication. That is, if elements A and B are in the group and $A\cdot B=C$, element C must be in the group.
- 2. One of the members of the group is a "unit element" (E). That is, for any element A of the group, $A\cdot E=E\cdot A=A.$
- 3. For each element A of the group, there is another element A^{-1} which is its "inverse". That is $A\cdot A^{-1}=A^{-1}\cdot A=E.$
- 4. The multiplication process is "associative". That is for sequential mulplication of group elements A,B, and C, $(A\cdot B)\cdot C=A\cdot (B\cdot C).$ 4/17/2017 PHY745 Spring 2017 Lecture 34

8

Definition:

An element $B = XAX^{-1}$ is defined as conjugate to element A, where X is any element of the group.

Definition:

A class is composed of members of a group which are generated by the conjugate construction:

 $\mathbf{C} = X_i^{-1} Y X_i$ where Y is a fixed group element and X_i are all of the elements of the group.

4/17/2017

PHY 745 Spring 2017 -- Lecture 34

The great orthogonality theorem

Notation: $h \equiv \text{order of the group}$

 $R \equiv$ element of the group

 $\Gamma^{i}(R)_{\alpha\beta} \equiv i \text{th representation of } R$

 $_{\mu\nu\alpha\beta}$ denote matrix indices

 $l_i \equiv$ dimension of the representation

$$\sum_{R} \left(\Gamma^{i}(R)_{\mu\nu}\right)^{*} \Gamma^{j}(R)_{\alpha\beta} = \frac{h}{l_{i}} \delta_{ij} \delta_{\mu\alpha} \delta_{\nu\beta}$$

4/17/2017

PHY 745 Spring 2017 -- Lecture 34

Character of a representation:

$$\chi^{j}(R) = \sum_{\mu} \Gamma^{j}(R)_{\mu\mu}$$

In terms of classes ${\bf C}$, each with $N_{\bf C}$ elements :

$$\sum_{e} N_{e} \left(\chi^{i}(\mathbf{e}) \right)^{*} \chi^{j}(\mathbf{e}) = h \delta_{ij}$$

4/17/2017

Some further conclusions:

$$\sum_{e} N_{e} \left(\chi^{i}(\mathbf{C}) \right)^{*} \chi^{j}(\mathbf{C}) = h \delta_{ij}$$

The characters χ^i behave as a vector space with the dimension equal to the number of classes.

→The number of characters=the number of classes

Second character identity:

$$\sum_{i} \left(\chi^{i}(\mathbf{C}_{k}) \right)^{*} \chi^{i}(\mathbf{C}_{l}) = \frac{h}{N_{\mathbf{c}_{k}}} \delta_{kl}$$

4/17/2017

PHY 745 Spring 2017 -- Lecture 34

Example of character table for D_3

"Standard" notation for representations of D_3

23

4/17/2017

PHY 745 Spring 2017 -- Lecture 34

Extension of group notions to continuous groups

- Introduced notion of mapping group members to finite number of continuous parameters
- Introduced notion of "metric"
- Introduced notion of connected subgroups
- "Algebraic" properties of group generators

4/17/2017