PHY 745 Group Theory 11-11:50 AM MWF Olin 102

Plan for Lecture 3:

Representation Theory

Reading: Chapter 2 in DDJ

- 1. Some details of groups and subgroups
- 2. Preparations for proving the "Great Orthgonality Theorem"

1/18/2017

		PHY	745 Group Theo	ry	
	N	NWF 11-11:50 AM	OPL 102 http://www.wfu.edu/~natali	e/s17phy745/	
	Instructo	or: Natalie Hotzwa	th Phone:758-5510 Office:300 OPL e-	mail:natale@w	fu.edu
					March 1
			se schedule for Spring 20		
	Lecture date		schedule – subject to frequent adjust		Due dat
1	Wed: 01/11/2017	(Preliminary	schedule — subject to frequent adjust Topic Definition and properties of groups	stment.)	Due date 01/20/2017
10	Wed: 01/11/2017 Fri: 01/13/2017	(Preliminary	schedule — subject to frequent adjust Topic Definition and properties of groups Theory of representations	stment.)	
2	Wed: 01/11/2017 Fri: 01/13/2017 Mon: 01/16/2017	(Preliminary DDJ Reading Chap. 1 Chap. 1	schedule — subject to frequent adjust Topic Definition and properties of groups Theory of representations MLK Holiday - no class	stment.)	
3	Wed: 01/11/2017 Fri: 01/13/2017 Mon: 01/16/2017 Wed: 01/18/2017	(Preliminary DDJ Reading Chap. 1	schedule — subject to frequent adjust Topic Definition and properties of groups Theory of representations	stment.)	
3	Wed: 01/11/2017 Fri: 01/13/2017 Mon: 01/16/2017	(Preliminary DDJ Reading Chap. 1 Chap. 1	schedule — subject to frequent adjust Topic Definition and properties of groups Theory of representations MLK Holiday - no class	stment.)	

Groups and subgroups

- A subgroup S is composed of elements of a group G which form a group
- A subgroup is called invariant (or normal or self-conjugate) if

for each element of the original group X,

 $X^{-1}SX = S$. Your text uses the symbol

 $\ensuremath{\mathcal{N}}$ to denote such a normal subgroup.

1/18/2017

PHY 745 Spring 2017 - Lecture 3

Example of a 6-member group *E,A,B,C,D,F,G*

Group multiplication table

Group of order 6

_	Е	A	В	C	D	F
Е	E	A	В	C	D	F
A	A	E	D	F	В	C
В	В	F	Е	D	C	A
C	C	D	F	Е	A	В
D	D	C	A	В	F	E
F	F	В	C	A	Е	D

1/18/2017

PHY 745 Spring 2017 - Lecture 3

Note that this group (called P(3) in your text) can be also described in terms of the permutations:

$$E = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$$

$$E = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} \qquad A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$
$$C = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \qquad D = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \qquad F = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$

$$B = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$

$$C = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

$$D = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$$

$$F = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$

	E	A	В	C	D	F
Е	E	A	В	C	D	F
A	A	Е	D	F	В	C
В	В	F	Е	D	C	A
C	C	D	F	E	A	В
D	D	C	A	В	F	E
F	F	В	C	A	Е	D

Subgroups:

(E,A)(E,B)

(E,C)

Invariant subgroup

Classes:

 $\mathcal{C}_1 = E$

 $\mathcal{C}_2 = A, B, C$

 $\mathcal{C}_3 = D, F$

1/18/2017

PHY 745 Spring 2017 - Lecture 3

Groups of groups -

The factor group is constructed with respect to a normal subgroup as the collection of its cosets. The factor group is itself a group. Note that for a normal subgroup, the left and right cosets are the same.

Group properties:

Denote group elements by X, Y, E (identity)....

- 1. Identity of factor group: $E\mathcal{N} = \mathcal{N}$
- 2. Inverse: $(X \mathcal{N})(X^{-1} \mathcal{N}) = (\mathcal{N} X)(X^{-1} \mathcal{N}) = \mathcal{N}^2 = \mathcal{N}$
- 3. Multiplication: $(X \mathcal{N})(Y \mathcal{N}) = (XY) \mathcal{N}$
- 4. Associative property: $((X\mathcal{N})(Y\mathcal{N}))(Z\mathcal{N}) = (X\mathcal{N})((Y\mathcal{N})(Z\mathcal{N}))$

1/18/2017

PHY 745 Spring 2017 - Lecture 3

P(3) example:

	E	A	В	C	D	F
E	E	A	В	C	D	F
A	A	E	D	F	В	C
В	В	F	Е	D	C	A
C	С	D	F	E	A	В
D	D	C	A	В	F	Е
F	F	В	C	A	Е	D

Factor group

$$\mathcal{N} = E, D, F$$

$$\mathcal{A} = A, B, C$$

Multiplication table for factor group:

1/18/2017

Representations of a group

A representation of a group is a set of matrices (one for each group element) -- $\Gamma(A)$, $\Gamma(B)$... that satisfies the multiplication table of the group. The dimension of the matrices is called the dimension of the representation.

PHY 745 Spring 2017 - Lecture 3

Example:

	E	A	В	C	D	F
Е	Е	A	В	C	D	F
A	A	Е	D	F	В	C
В	В	F	Е	D	C	A
C	С	D	F	E	A	В
D	D	C	A	В	F	Е
F	F	В	C	A	Е	D

Identical Representation:

$$\Gamma^{1}(A) = \Gamma^{1}(B) = \Gamma^{1}(C)$$

= $\Gamma^{1}(D) = \Gamma^{1}(E) = \Gamma^{1}(F) = 1$

Another Representation

$$\Gamma^{2}(A) = \Gamma^{2}(B) = \Gamma^{2}(C) = -1$$

 $\Gamma^{2}(E) = \Gamma^{2}(D) = \Gamma^{2}(F) = 1$

Third Representation

$$\Gamma^{3}(E) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \Gamma^{3}(A) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \qquad \Gamma^{3}(B) = \begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{5}}{2} \\ \frac{\sqrt{5}}{2} & \frac{1}{2} \end{pmatrix}
\Gamma^{3}(C) = \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{5}}{2} \\ -\frac{\sqrt{5}}{2} & \frac{1}{2} \end{pmatrix} \qquad \Gamma^{3}(D) = \begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{5}}{2} \\ -\frac{\sqrt{5}}{2} & -\frac{1}{2} \end{pmatrix} \qquad \Gamma^{3}(F) = \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{5}}{2} \\ \frac{\sqrt{5}}{2} & -\frac{1}{2} \end{pmatrix}$$

The great orthogonality theorem on unitary irreducible representations

Notation: $h \equiv \text{order of the group}$

 $R \equiv$ element of the group

 $\Gamma^{i}(R)_{\alpha\beta} \equiv i \text{th representation of } R$

 $_{\mu\nu\alpha\beta}$ denote matrix indices

 $l_i = \text{dimension of the representation}$

$$\sum_{R} \left(\Gamma^{i}(R)_{\mu\nu}\right)^{*} \Gamma^{j}(R)_{\alpha\beta} = \frac{h}{l} \delta_{ij} \delta_{\mu\alpha} \delta_{\nu\beta}$$

$$\sum_{R} \left(\Gamma^{i}(R)_{\mu\nu} \right)^{*} \Gamma^{j}(R)_{\alpha\beta} = \frac{h}{l_{i}} \delta_{ij} \delta_{\mu\alpha} \delta_{\nu\beta}$$

Example:

$$\Gamma^{1}(A) = \Gamma^{1}(B) = \Gamma^{1}(C) = \Gamma^{1}(D) = \Gamma^{1}(E) = \Gamma^{1}(F) = 1$$

$$\Gamma^{2}(A) = \Gamma^{2}(B) = \Gamma^{2}(C) = -1 \qquad \Gamma^{2}(E) = \Gamma^{2}(D) = \Gamma^{2}(F) = 1$$

$$\Gamma^{3}(E) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \Gamma^{3}(A) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \qquad \Gamma^{3}(B) = \begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{5}}{2} \\ \frac{\sqrt{5}}{2} & \frac{1}{2} \end{pmatrix}$$

$$\Gamma^{3}(C) = \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{5}}{2} \\ -\frac{\sqrt{5}}{2} & \frac{1}{2} \end{pmatrix} \qquad \Gamma^{3}(D) = \begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{5}}{2} \\ -\frac{\sqrt{5}}{2} & -\frac{1}{2} \end{pmatrix} \qquad \Gamma^{3}(F) = \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{5}}{2} \\ \frac{\sqrt{5}}{2} & -\frac{1}{2} \end{pmatrix}$$

$\sum \Gamma^{1}(R)\Gamma^{1}(R) = 6$	$\sum \Gamma^2(R)\Gamma^2(R) = 6$	$\sum \Gamma^{1}(R)\Gamma^{2}(R) = 0$
R	R	R

1/18/2017

pring 2017 - Lecture 3

Special types of matrices -- unitary

$$UU^{\dagger} = U^{\dagger}U = 1$$

Example:
$$U = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix}$$

$$UU^{\dagger} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Example:
$$U = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

$$UU^{\dagger} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

1/18/2017

PHY 745 Spring 2017 - Lecture 3

Special types of matrices -- Hermitian

$$H^{\dagger} = H$$

Example:
$$H = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} = H^{\dagger}$$

For every Hermitian matrix, there is a unitary matrix ${\cal U}$ which can be used to transformation it into diagonal form:

$$d = U^{\dagger}HU$$

$$\begin{split} \text{For our example:} \qquad & U = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{i}{\sqrt{2}} \\ \frac{i}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \qquad & U^\dagger = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{i}{\sqrt{2}} \\ -\frac{i}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \\ & U^\dagger H U = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \end{split}$$

Here the diagonal elements are real.

1/18/2017

Digression: Note that unitary matrices themselves can also be put into diagonal form with a unitary similarity transformation. Last week we had the example:

$$\begin{array}{ll} \operatorname{Let} & M = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} & U = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{i}{\sqrt{2}} & \frac{-i}{\sqrt{2}} \end{pmatrix} & U^\dagger = U^{-1} = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{-i}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{i}{\sqrt{2}} \end{pmatrix} \\ U^\dagger M U = U^\dagger \begin{pmatrix} \frac{1}{\sqrt{2}} e^{-i\theta} & \frac{1}{\sqrt{2}} e^{i\theta} \\ \frac{i}{\sqrt{2}} e^{-i\theta} & \frac{-i}{\sqrt{2}} e^{i\theta} \end{pmatrix} = \begin{pmatrix} e^{-i\theta} & 0 \\ 0 & e^{i\theta} \end{pmatrix}$$

In this case the diagonal elements have modulus unity.

1/18/2017

PHY 745 Spring 2017 - Lecture 3

Proof of the great orthogonality theorem

- Prove that all representations can be unitary matrices
- Prove Schur's lemma part 1 any matrix which commutes with all matrices of an irreducible representation must be a constant matrix
- · Prove Schur's lemma part 2
- · Put all parts together

1/18/2017

PHY 745 Spring 2017 - Lecture 3

Proof of the great orthogonality theorem

- Prove that all representations can be unitary matrices
- Prove Schur's lemma part 1 any matrix which commutes with all matrices of an irreducible representation must be a constant matrix
- Prove Schur's lemma part 2
- · Put all parts together

Note that for any representation $\Gamma(R)$ of group elements R, the similarity transformed representation $\Gamma'(R) = S^{-1}\Gamma(R)S$ is also a representation.

1/18/2017

Prove that all representations can be unitary matrices

Note that for any representation $\Gamma(R)$ of group elements R, the similarity transformed representation $\Gamma'(R) = S^{-1}\Gamma(R)S$ is also a representation.

Suppose that representation $\Gamma(R)$ is not unitary: $\Gamma(R)(\Gamma(R))^{\dagger} \neq 1$ Find S such that $\Gamma'(R) = S^{-1}\Gamma(R)S$ and $\Gamma'(R)(\Gamma'(R))^{\dagger} = 1$.

Answer:
$$S = Ud^{1/2}$$

where $d = U^{\dagger} \left(\sum_{R} \Gamma(R) \Gamma^{\dagger}(R) \right) U$

1/18/2017

PHY 745 Spring 2017 - Lecture 3

Answer:
$$S = Ud^{1/2}$$
 where $d = U^{\dagger} \left(\sum_{R} \Gamma(R) \Gamma^{\dagger}(R) \right) U$

Summation over al elements of group

Note that
$$\left(\sum_{R} \Gamma(R) \Gamma^{\dagger}(R)\right)^{\dagger} = \left(\sum_{R} \Gamma(R) \Gamma^{\dagger}(R)\right)$$

Details: $\left(AA^{\dagger}\right)_{ij} = \sum_{k} A_{ik} A^{\dagger}_{ij} = \sum_{k} A_{ik} A^{*}_{jk}$
 $\left(AA^{\dagger}\right)^{\dagger}_{ij} = \left(AA^{\dagger}\right)^{*}_{ji} = \sum_{k} \left(A_{jk} A^{*}_{ik}\right)^{*} = \sum_{k} A^{*}_{jk} A_{ik}$

1/18/2017

PHY 745 Spring 2017 - Lecture 3

Since
$$\left(\sum_{R} \Gamma(R) \Gamma^{\dagger}(R)\right)$$
 is Hermitian, we can find a unitary matrix U to form $d = U^{\dagger} \left(\sum_{R} \Gamma(R) \Gamma^{\dagger}(R)\right) U$

Note that all elements of the diagonal matrix d are real and positive.

Choose:
$$S = Ud^{1/2}$$
 and construct $\Gamma'(R) = S^{-1}\Gamma(R)S$
 $\Gamma'(R)(\Gamma'(R))^{\dagger} = S^{-1}\Gamma(R)S(S^{-1}\Gamma(R)S)^{\dagger}$
 $S^{-1} = d^{-1/2}U^{\dagger}$ $S^{\dagger} = d^{1/2}U^{\dagger}$
 $S^{-1}\Gamma(R)S(S^{-1}\Gamma(R)S)^{\dagger} = d^{-1/2}U^{\dagger}\Gamma(R)Ud^{1/2}d^{1/2}U^{\dagger}\Gamma^{\dagger}(R)Ud^{-1/2}$
 $= d^{-1/2}U^{\dagger}\Gamma(R)UdU^{\dagger}\Gamma^{\dagger}(R)Ud^{-1/2}$

1/18/2017

$$\Gamma'(R) = S^{-1}\Gamma(R)S$$

$$\Gamma'(R)(\Gamma'(R))^{\dagger} = S^{-1}\Gamma(R)S(S^{-1}\Gamma(R)S)^{\dagger}$$

$$S^{-1}\Gamma(R)S(S^{-1}\Gamma(R)S)^{\dagger} = d^{-1/2}U^{\dagger}\Gamma(R)Ud^{1/2}d^{1/2}U^{\dagger}\Gamma^{\dagger}(R)Ud^{-1/2}$$

$$= d^{-1/2}U^{\dagger}\Gamma(R)UdU^{\dagger}\Gamma^{\dagger}(R)Ud^{-1/2}$$

$$d = U^{\dagger} \left(\sum_{R} \Gamma(R) \Gamma^{\dagger}(R) \right) U$$

$$S^{-1} \Gamma(R) S \left(S^{-1} \Gamma(R) S \right) = d^{-1/2} U^{\dagger} \Gamma(R) \left(\sum_{R'} \Gamma(R') \Gamma^{\dagger}(R') \right) \Gamma^{\dagger}(R) U d^{-1/2}$$

$$= d^{-1/2} U^{\dagger} \left(\sum_{R''} \Gamma(R'') \Gamma^{\dagger}(R'') \right) U d^{-1/2}$$

$$= d^{-1/2} d d^{-1/2} = 1$$

4/40/0047

15 Spring 2017 – Lecture 3

Proved that all representations can be unitary matrices

Consider our example:

$$\Gamma^{3}(E) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \Gamma^{3}(A) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \qquad \Gamma^{3}(B) = \begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{5}}{2} & \frac{1}{2} \end{pmatrix}
\Gamma^{3}(C) = \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{5}}{2} & \frac{1}{2} \end{pmatrix} \qquad \Gamma^{3}(D) = \begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{5}}{2} & -\frac{1}{2} \end{pmatrix} \qquad \Gamma^{3}(F) = \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{5}}{2} \\ \frac{\sqrt{5}}{2} & -\frac{1}{2} \end{pmatrix}$$

Consider the construction: $\sum_{R} \Gamma(R) \Gamma^{\dagger}(R)$:

For this example, $\sum_{R} \Gamma(R) \Gamma^{\dagger}(R) = \begin{pmatrix} 6 & 0 \\ 0 & 6 \end{pmatrix}$

1/18/2017