PHY 712 - Problem Set \#4

Continue reading Chaper 1-3 in Jackson

1. Consider a two-dimensional charge distribution of the form:

$$
\rho(x)=\rho_{0} \sin \left(\frac{\pi x}{a}\right) \sin \left(\frac{2 \pi y}{a}\right),
$$

where ρ_{0} represents a density constant and a represents a length constant. In the problem, you are asked to determine the electrostatic potential $\Phi(x, y)$ for $0 \leq x \leq a$ and $0 \leq y \leq a$, which satisfies the Poisson equation for the charge density $\rho(x, y)$. and statisfies the boundary conditions $\Phi(0, y)=\Phi(a, y)=\Phi(x, 0)=\Phi(x, a)=0$.
(a) Find the analytic form of the electrostatic potential $\Phi(x, y)$ for $0 \leq x \leq a$ and $0 \leq y \leq a$.
(b) Using the finite difference method for the two grids discussed in class, find $\Phi(x, y)$ on the grid points.
(c) Using the finite element method for the two grids discussed in class, find $\Phi(x, y)$ on the grid points.
(d) Compare the accuracy of the numerical solutions for this example.

