PHY 712 Electrodynamics 9-9:50 AM MWF Olin 105

Plan for Lecture 3:
Reading: Chapter 1 in JDJ

1. Review of electrostatics with onedimensional examples
2. Poisson and Laplace Equations
3. Green's Theorem and their use in electrostatics

PHY 712 Electrodynamics					
	MWF 9-9:50 AM OPL 105 http://wwwwwu.edu/-natalie/s 18phy712]				
Instructor: Natalie Holzwarth Phone:758-5510 Office:300 OPL e-mall:natalie eqwu edu					
Course schedule for Spring 2018 (Preliminary schedule - subject to frequent adjustment.)					
	Lecture date	JDJ Reading	Topic	HW	Due date
	Wed. 01/17/2018	No class	Snow		
1	Fri: 01/19/2018	Chap. $1 \&$ Appen.	Introduction, units and Poisson equation	\#1	01/26/2018
,	Mon: 01/2212018	Chap. 1	Electrostatic energy calculations	\#12	01/26/2018
3	Wed 01/242018	Chap. 1	Poisson's equation and Green's theorem	\#3	01/28/2018
4	Thu: 01/25/2018	Chap. 1\&2	Poisson's equation in 2 and 3 dimensions		
5	Fri: 01/26/2018				
6	Mon: 01/2912018				
7	Wect 01/31/2018				
	1/24/2018		PHY 712 Spring 2018 - Lecture 3		2

Announcements:		
Make-up class scheduled for tommorrow - 1/25/2018 at 11 AM in Olin 105.		
No physics colloquium this week --		
Wed. Jan. 24, 2018 - Colloquium rescheduled for Feb. 28, 2018. Some physics colloquium participants may wish to attend the Chemistry Colloquium at this time - Dr. Nikolay Kornienko from Cambridge University will be speaking on "Developing Energy Harvesting and Storage Systems through Rational Design" at 4 PM at Wake Downtown, Room 4802.		
112412018	PHY712 Spring 2018 - Leeture 3	3

Poisson and Laplace Equations

We are concerned with finding solutions to the Poisson equation:

$$
\begin{aligned}
& \nabla^{2} \Phi_{P}(\mathbf{r})=-\frac{\rho(\mathbf{r})}{\mathcal{E}_{0}} \\
& \text { equation: }
\end{aligned}
$$

and the Laplace equation:

$$
\nabla^{2} \Phi_{L}(\mathbf{r})=0
$$

The Laplace equation is the "homogeneous" version of the Poisson equation. The Green's theorem allows us to determine the electrostatic potential from volume and surface integrals:

$$
\Phi(\mathbf{r})=\frac{1}{4 \pi \varepsilon_{0}} \int_{V} d^{3} r^{\prime} \rho(\mathbf{r}) G\left(\mathbf{r}, \mathbf{r}^{\prime}\right)+
$$

$$
\frac{1}{4 \pi} \int_{S} d^{2} r^{\prime}\left[G\left(\mathbf{r}, \mathbf{r}^{\prime}\right) \nabla^{\prime} \Phi\left(\mathbf{r}^{\prime}\right)-\Phi\left(\mathbf{r}^{\prime}\right) \nabla^{\prime} G\left(\mathbf{r}, \mathbf{r}^{\prime}\right)\right] \cdot \hat{\mathbf{r}}^{\prime} .
$$

1/24/2018

Poisson equation -- continued

Note that we have previously shown that the differential and integral forms of Coulomb's law is given by:
$\nabla^{2} \Phi(\mathbf{r})=-\frac{\rho(\mathbf{r})}{\varepsilon_{0}} \quad$ and $\quad \Phi(\mathbf{r})=\frac{1}{4 \pi \varepsilon_{0}} \int_{V} d^{3} r^{\prime} \frac{\rho\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}$
Generalization of analysis for non-trivial boundary conditions:
$\Phi(\mathbf{r})=\frac{1}{4 \pi \varepsilon_{0}} \int_{V} d^{3} r^{\prime} \rho\left(\mathbf{r}^{\prime}\right) G\left(\mathbf{r}, \mathbf{r}^{\prime}\right)+$

$$
\frac{1}{4 \pi} \int_{S} d^{2} r^{\prime}\left[G\left(\mathbf{r}, \mathbf{r}^{\prime}\right) \nabla^{\prime} \Phi\left(\mathbf{r}^{\prime}\right)-\Phi\left(\mathbf{r}^{\prime}\right) \nabla^{\prime} G\left(\mathbf{r}, \mathbf{r}^{\prime}\right)\right] \cdot \hat{\mathbf{r}}^{\prime} .
$$

1/24/2018 PHY 712 Spring 2018 - Lecture 3
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

General comments on Green's theorem

$$
\begin{aligned}
\Phi(\mathbf{r}) & =\frac{1}{4 \pi \varepsilon_{0}} \int_{V} d^{3} r^{\prime} \rho\left(\mathbf{r}^{\prime}\right) G\left(\mathbf{r}, \mathbf{r}^{\prime}\right)+ \\
& \frac{1}{4 \pi} \int_{S} d^{2} r^{\prime}\left[G\left(\mathbf{r}, \mathbf{r}^{\prime}\right) \nabla^{\prime} \Phi\left(\mathbf{r}^{\prime}\right)-\Phi\left(\mathbf{r}^{\prime}\right) \nabla^{\prime} G\left(\mathbf{r}, \mathbf{r}^{\prime}\right)\right] \cdot \hat{\mathbf{r}}^{\prime}
\end{aligned}
$$

\qquad
\qquad
\qquad
This general form can be used in 1, 2, or 3 dimensions. In general, the Green's function must be constructed to satisfy \qquad the appropriate (Dirichlet or Neumann) boundary conditions.
\qquad adjusted using the fact that for any solution to the Poisson equation, $\quad \Phi_{P}(\mathbf{r})$ other solutions may be generated by use of solutions of the Laplace equation

$$
\Phi(\mathbf{r})=\Phi_{P}(\mathbf{r})+C \Phi_{L}(\mathbf{r}), \text { for any constant } C .
$$

1/24/2018 PHY 712 Spring 2018 - Lecture 3
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

> "Derivation" of Green's Theorem Poisson equation: $\nabla^{2} \Phi(\mathbf{r})=-\frac{\rho(\mathbf{r})}{\varepsilon_{0}}$ Green's relation: $\quad \nabla^{\prime 2} G\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=-4 \pi \delta^{3}\left(\mathbf{r}-\mathbf{r}^{\prime}\right)$. $\int_{V} d^{3} r\left(f(\mathbf{r}) \nabla^{2} g(\mathbf{r})-g(\mathbf{r}) \nabla^{2} f(\mathbf{r})\right)=\oint_{S} d^{2} r(f(\mathbf{r}) \nabla g(\mathbf{r})-g(\mathbf{r}) \nabla f(\mathbf{r})) \cdot \hat{\mathbf{r}}$ $f(\mathbf{r}) \leftrightarrow \Phi(\mathbf{r}) \quad g(\mathbf{r})=G\left(\mathbf{r}, \mathbf{r}^{\prime}\right)$ $\Phi(\mathbf{r})=\frac{1}{4 \pi \varepsilon_{0}} \int_{V} d^{3} r^{\prime} \rho\left(\mathbf{r}^{\prime}\right) G\left(\mathbf{r}, \mathbf{r}^{\prime}\right)+$ $\frac{1}{4 \pi} \int_{S} d^{2} r^{\prime}\left[G\left(\mathbf{r}, \mathbf{r}^{\prime}\right) \nabla^{\prime} \Phi\left(\mathbf{r}^{\prime}\right)-\Phi\left(\mathbf{r}^{\prime}\right) \nabla^{\prime} G\left(\mathbf{r}, \mathbf{r}^{\prime}\right)\right] \cdot \hat{\mathbf{r}}^{\prime}$. PHY 712 Spring 2018-Lexture 3
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Example of charge density and potential varying in one dimension
Consider the following one dimensional charge distribution:

$$
\rho(x)= \begin{cases}0 & \text { for } x<-a \\ -\rho_{0} & \text { for }-a<x<0 \\ +\rho_{0} & \text { for } 0<x<a \\ 0 & \text { for } x>a\end{cases}
$$

We want to find the electrostatic potential such that

$$
\frac{d^{2} \Phi(x)}{d x^{2}}=-\frac{\rho(x)}{\varepsilon_{0}},
$$

with the boundary condition $\Phi(-\infty)=0$.
PHY 712 Spring $2018-$ Lecture 3

Electrostatic field solution

The solution to the Poisson equation is given by:
\qquad

$$
\Phi(x)= \begin{cases}0 & \text { for } x<-a \\ \frac{\rho_{0}}{2 \varepsilon_{0}}(x+a)^{2} & \text { for }-a<x<0 \\ -\frac{\rho_{0}}{2 \varepsilon_{0}}(x-a)^{2}+\frac{\rho_{0} a^{2}}{\varepsilon_{0}} & \text { for } 0<x<a \\ \frac{\rho_{0}}{\varepsilon_{0}} a^{2} & \text { for } x>a\end{cases}
$$

The electrostatic field is given by:

$$
E(x)= \begin{cases}0 & \text { for } x<-a \\ -\frac{\rho_{0}}{\varepsilon_{0}}(x+a) & \text { for }-a<x<0 \\ \frac{\rho_{0}}{\varepsilon_{0}}(x-a) & \text { for } 0<x<a \\ 0 & \text { for } x>a\end{cases}
$$

1/24/2018

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Comment about the example and solution

This particular example is one that is used to model semiconductor junctions where the charge density is controlled by introducing charged impurities near the junction.

The solution of the Poisson equation for this case can be determined by piecewise solution within each of the four regions. Alternatively, from Green's theorem in one-dimension, one can use the Green's function
$\Phi(x)=\frac{1}{4 \pi \varepsilon_{0}} \int_{-\infty}^{\infty} G\left(x, x^{\prime}\right) \rho\left(x^{\prime}\right) d x^{\prime} \quad$ where $G\left(x, x^{\prime}\right)=4 \pi x_{<}$
$x_{<}$should be take as the smaller of x and x^{\prime}.
/24/2018
PHY 712 Spring 2018 - Lecture 3
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes on the one-dimensional Green's function

The Green's function for the one-dimensional Poisson equation can be defined as a solution to
\qquad the equation: $\quad \nabla^{2} G\left(x, x^{\prime}\right)=-4 \pi \delta\left(x-x^{\prime}\right)$ \qquad
Here the factor of 4π is not really necessary, but ensures consistency with your text's treatment of the 3-dimensional case. The meaning of this expression is that x^{\prime} is held fixed while taking the derivative with respect to x.

Construction of a Green's function in one dimension

Consider two independent solutions to the homogeneous equation
$\nabla^{2} \phi_{i}(x)=0$
where $i=1$ or 2 . Let \qquad
$G\left(x, x^{\prime}\right)=\frac{4 \pi}{W} \phi_{1}\left(x_{<}\right) \phi_{2}\left(x_{>}\right)$.
This notation means that $x_{<}$should be taken as the smaller of x and x^{\prime} and x, should be taken as the larger. \qquad
W is defined as the "Wronskin":
$W \equiv \frac{d \phi_{1}(x)}{d x} \phi_{2}(x)-\phi_{1}(x) \frac{d \phi_{2}(x)}{d x}$.

1/24/2018
PHY 712 Spring 2018 - Lecture 3
Summary
$\nabla^{2} G\left(x, x^{\prime}\right)=-4 \pi \delta\left(x-x^{\prime}\right)$
$G\left(x, x^{\prime}\right)=\frac{4 \pi}{W} \phi_{1}\left(x_{<}\right) \phi_{2}\left(x_{>}\right)$
$W \equiv \frac{d \phi_{1}(x)}{d x} \phi_{2}(x)-\phi_{1}(x) \frac{d \phi_{2}(x)}{d x}$
$\left.\left.\frac{d G\left(x, x^{\prime}\right)}{d x}\right\rfloor_{x=x^{\prime}+\epsilon}-\frac{d G\left(x, x^{\prime}\right)}{d x}\right\rfloor_{x=x^{\prime}-\epsilon}=-4 \pi$
${ }_{1 / 2412018} \quad$

One dimensional Green's function in practice

$$
\begin{aligned}
\Phi(x) & =\frac{1}{4 \pi \varepsilon_{0}} \int_{-\infty}^{\infty} G\left(x, x^{\prime}\right) \rho\left(x^{\prime}\right) d x^{\prime} \\
& =\frac{1}{4 \pi \varepsilon_{0}}\left\{\int_{-\infty}^{x} G\left(x, x^{\prime}\right) \rho\left(x^{\prime}\right) d x^{\prime}+\int_{x}^{\infty} G\left(x, x^{\prime}\right) \rho\left(x^{\prime}\right) d x^{\prime}\right\}
\end{aligned}
$$

For the one-dimensional Poisson equation, we can construct the Green's function by choosing $\phi_{1}(x)=x$ and $\phi_{2}(x)=1 ; W=1$:
$\Phi(x)=\frac{1}{\varepsilon_{0}}\left\{\int_{-\infty}^{x} x^{\prime} \rho\left(x^{\prime}\right) d x^{\prime}+x \int_{x}^{\infty} \rho\left(x^{\prime}\right) d x^{\prime}\right\}$.
$G\left(x, x^{\prime}\right)=4 \pi x_{<}$
This expression gives the same result as previously obtained for the example $\rho(x)$ and more generally is appropriate for any neutral charge distribution.
\qquad 16
Orthogonal function expansions and Green's functions
Suppose we have a "complete" set of orthogonal functions $\left\{u_{n}(x)\right\}$ defined in the
interval $x_{1} \leq x \leq x_{2}$ such that

$$
\int_{x_{1}}^{x_{2}} u_{n}(x) u_{m}(x) d x=\delta_{n m} \text {. }
$$

We can show that the completeness of this functions implies that

$$
\sum_{n=1}^{\infty} u_{n}(x) u_{n}\left(x^{\prime}\right)=\delta\left(x-x^{\prime}\right) .
$$

This relation allows us to use these functions to represent a Green's function for our
system. For the 1-dimensional Poisson equation, the Green's function satisfies
$\frac{\partial^{2}}{\partial x^{2}} G\left(x, x^{\prime}\right)=-4 \pi \delta\left(x-x^{\prime}\right)$.
PHY 712 Spring 2018-Lecture 3
${ }_{1 / 24 / 2018}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Orthogonal function expansions -continued Orer Therefore, if$\frac{d^{2}}{d x^{2}} u_{n}(x)=-\alpha_{n} u_{n}(x)$, where $\left\{u_{n}(x)\right\}$ also satisfy the appropriate boundary conditions, then we can write । Green's functions as $\quad G\left(x, x^{\prime}\right)=4 \pi \sum_{n} \frac{u_{n}(x) u_{n}\left(x^{\prime}\right)}{\alpha_{n}}$, $1 / 24 / 2018$ PHY 712 Spring $2018-$ Lecture 3

