PHY 712 Electrodynamics
9-9:50 AM MWF Olin 105

Plan for Lecture 3:
Reading: Chapter 1 in JDJ

1. Review of electrostatics with one-
dimensional examples

2. Poisson and Laplace Equations

3. Green’s Theorem and their use in
electrostatics
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PHY 712 Electrodynamics

MWF $-9:50 AM | |OPL 105 hitp:www.wiu edu/-natalie/s18phy 712/

Instructor: Natalie Hotrwarth Phone:758-5510 |Office:300 OPL le-mail:natalie i edu

Course schedule for Spring 2018

(Preliminary scheduls — subject to frequent adjustment )

| Lecture date  JDJ Reading Topic HW Due date
Wed: 011172018 Mo class Snow
| e Chap 1& N P
1 Fr: 1192018 il Introduction, wnits and Poisson equation &1 0172672018
2 Mon 0172212018 (Chap. 1 Electrostalic energy caiculations w2 17262018
2 Wed: 01 018 [Chap. 1 Poisson's equation and Green's theoram #3
4 Thu D1252018 Chap 142  Polsson's equation in 2 and 3 dimensians
8 [Fri. 01/26/2018
8 Mon 01292018
T Wed 017312018
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Announcements:

Make-up class scheduled for tommorrow — 1/25/2018
at 11 AMin Olin 105.

No physics colloquium this week --

Wed. Jan. 24, 2018 — Colloguium rescheduled for Feb. 28, 2018. Some
physics colloguium participants may wish to attend the Chemistry Colloguium
at this time — Dr. Nikolay Kornienko from Cambridge University will be
speaking on “Developing Energy Harvesting and Storage Systems through
Rational Design” at 4 PM at Wake Downtown, Room 4802
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Poisson and Laplace Equations
We are concerned with finding solutions to the Poisson
equation:

Vo, (r) =0
&
and the Laplace equation: 0
VO, (r)=0

The Laplace equation is the “homogeneous” version of the
Poisson equation. The Green's theorem allows us to
determine the electrostatic potential from volume and surface
integrals: 1

()= jyd%' PG, 1)+

%j Er[Gr,r)V'd@r) —d(r)V'G(r,r)]-F".
T N
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Poisson equation -- continued

Note that we have previously shown
that the differential and integral forms

of Coulomb's law is given by:

Vo) =-L20 and @) =——[ a2
& 4re, 7V ‘r—r"

Generalization of analysis for non-trivial boundary conditions:

O(r) = Lj,aﬂr' A(rYG(r,r) +
dngy

%[ d*r'[G(r,r)V'O(r) - d(r)V'G(r,r')]-F.
T N

1/24/2018 PHY 712 Spring 2018 — Lecture 3

General comments on Green’s theorem

O(r) = ﬁjyd‘r’p(r’ YG(r,r') +

i-{s P [G(r,r')V'GD(r') - CD(r')V'G(r,r')} L

This general form can be used in 1, 2, or 3 dimensions. In
general, the Green's function must be constructed to satisfy
the appropriate (Dirichlet or Neumann) boundary conditions.
Alternatively or in addition, boundary conditions can be
adjusted using the fact that for any solution to the Poisson
equation, (I)P(r) other solutions may be generated by use
of solutions of the Laplace equation

O(r)=D,(r)+ CD,(r),for any constant C.
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“Derivation” of Green’s Theorem
_p®)

80
Green's relation: V'’G(r,r) = 475" (r —r').

Poisson equation: V’®(r) =

Divergence theorm: J.dEr V-A= q;dzr At
v s

Let A= f(r)Vg(r)—g(r)Vf(r)
jd“r v -(f(r)Vg(r)—g(r)Vf(r)) :(i)dzr (f(r)Vg(r)—g(r)Vj'(r))~i‘
Ja”r (f(r)Vzg(r) —g(r)VZf(r))
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“Derivation” of Green’s Theorem
_p)

80
Green's relation: V"’G(r,r) = 475" (r —r').

Poisson equation: V’®(r) =

Id3r (f(r)Vzg(r)—g(r)sz(r)) :Sﬁdzr (f(r)Vg(r) —g(r)Vf(r))~f

f(r)o o) g(r)=G(r.r")
D(r) =i&)‘|‘yd3r'p(r')G(r,r')+

%j d’r'[G(r,r)V'O(r) - D(r)V'G(r,r)]-F'.
v N
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Example of charge density and potential varying in one dimension
Consider the following one dimensional charge distribution:

0 forer < —a

—py for—a<ax<0
plx) = )
top forl<r <a

0 forz >a

We want to find the electrostatic potential such that

u“z‘]'l_.a'} _ plz)

— = 7
dr? '

with the boundary condition ${—oc) = (),
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Electrostatic field solution

The solution to the Poisson equation is given by:

0 fore < —a
for—e<z<0
&(z) = .
forl<r<a
forz > a
The electrostatic field is given by:
0 forr < —a
, —Bir+a) for—a<zr<0
E(z)= ol
Sfr—a) fol<z<a
1] forx>a
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Electric charge density
— Electric potential
Electric field
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Comment about the example and solution

This particular example is one that is used to model
semiconductor junctions where the charge density is
controlled by introducing charged impurities near
the junction.

The solution of the Poisson equation for this case can
be determined by piecewise solution within each of the
four regions. Alternatively, from Green's theorem in
one-dimension, one can use the Green's function

47

x_ should be take as the smaller of x and x'.

D(x)= lg J‘ZG(x,x')p(x')dx' where G(x,x")=4rx_
0
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Notes on the one-dimensional Green’s function

The Green's function for the one-dimensional

Poisson equation can be defined as a solution to

the equation: V2G(x,x") = —478(x — x")

Here the factor of 47 is not really necessary, but

ensures consistency with your text's treatment of

the 3-dimensional case. The meaning of this expression
is that x' is held fixed while taking the derivative with

respect to x.
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Construction of a Green’s function in one dimension

Consider two independent solutions to the homogeneous equation
Vi(x)=0
where i =1or2. Let
. 4r
G(x,x)= Wﬂ(&)%(&)-

This notation means that x_ should be taken as the

smaller of x and x' and x_ should be taken as the larger.

W is defined as the "Wronskin":

_d4(x) PPN AC))
(s $(x) =~ ¢ (x) R
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Summary

V’G(x,x") = —415(x - x")
Gx) = ST A )A(x)

_ dg(x) _ dg,(x)
W= dx $(x) = ¢(x) dx

dG(x,x")

| dG(x,x")
dx T dx

Jx:x'—f = _47[
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One dimensional Green’s function in practice
1 o
D)= Gle.x)p(x)dr’
4re, T

=L{r G(x,x") p(x"dx'+ rG(x,x')p(x')dx'}
4re, V= x
For the one-dimensional Poisson equation, we can construct
the Green's function by choosing ¢ (x) =x and ¢,(x)=LW =1:
1 (px ©
®uy>7“ xpumkwxjpumu}
g U= x
G(x,x")=4rx_
This expression gives the same result as previously
obtained for the example p(x) and more generally is
appropriate for any neutral charge distribution.
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Irth I function ions and Green’s functions

Suppose we have a “complete” set of orthogonal functions {u,, ()} defined in the
interval ry < r < ry such that

/ ] te(z () 82 = dpm.

We can show that the completeness of this functions implies that

Z (T (') = d(z — 2'),

This relation allows us o use these functions to represent a Green's function for our
system. For the |-dimensional Poisson equation, the Green's function satisfies

—G(z,2"y = —dmblz - 2').
dr?
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Ortl 1 function expansions —continued
Therefore, if

42
Sz ta(T) = —anua(z),
FJJ."

where {u, ()} also satisfy the appropriate boundary conditions, then we can write |
Green's functions as
Gy =ds Z Uy (2 )ty [ ?_

iy
n
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Example
For example, consider the example discussed earlier in the interval —a < ¢ < a with
] forr < —a
plz) = —m for—a<x<0 o
ton forl<r<a

0 fore >a

We want to solve the Poisson equation with boundary condition ¢ —a)/dr = 0 and

dd{a}/dr = (). For this purpose, we may choose

(260
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Example - continued

Constant shift to

3 allow ®(0)=0.

®(r) = L
€n
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