PHY 712 Electrodynamics
9-9:50 AM MWF Olin 105
Plan for Lecture 4:

Reading: Chapter 1 - 3 in JDJ

Electrostatic potentials

1. One, two, and three dimensions

2. Mean value theorem for the

(Cartesian coordinates)

electrostatic potential
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Colloquium: “Gravitational Wave
Astrophysics: A New Era of Discovery.” -
January 23, 2019, at 4:00 PM

Jessica Meiver, PhD, Senior Postdoctoral
Scholar in Physics, Calech George P.
Willams, Jr. Lecture Hal, (Oin 101)
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Course schedule for Spring 2018

(Preliminary schedule -- subject to frequent adjustment.)
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Lecture date

JDJ Reading

Topic

[HwW|  Due date

Mon: 01/14/2019
Wed: 01/16/2019
Fri: 01/18/2019

Mon: 01/21/2019
Wed: 01/23/2019
Fri: 01/25/2019

Mon: 01/28/2019

Chap. 1 & Appen.
Chap. 1

Chap. 1

No class
Chap.1-3

Chap. 1-3

Introduction, units and Poisson equation

Electrostatic energy calculations
Electrostatic potentials and fields
Martin Luther King Holiday

Poisson's equation in 2 and 3 dimensions
Brief introduction to numberical methods
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#1 01/23/2019
l#2 0112312019
l#3 0112312019
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Wed: 01/30/2019

Fri: 02/01/2019
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Mon: 02/04/2019

Wed: 02/06/2019

Fri: 02/08/2019
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Mon: 02/11/2019

©

Wed: 02/13/2019
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Fri: 02/15/2019
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Poisson Equation

W@An=~ﬂﬂ

€y

Solution to Poisson equation using Green's function G(r,r"):

O(r) = i[y &’r' p(r\G(r,r'") +

%j & [G(r, e )V (") - D(r')V' G(r,r)]-F.
T N
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Poisson equation for one-dimensional system
d0,(x) __px)
. : 50
Example solution:
1 (=
D,(x)= —J G(x,x")p(x")dx'+ C + C,x
Are, T

where G(x,x'") =47zx_ where x_ is the smaller of x and x';

C, and C, are constants.

Check:
D,(x)= L{Jﬂ x'p(x")dx'+ xrp(x')dx'} +C +Cx
£ U= X
O L g, W po)
dx &% : ax’ &
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General procedure for constructing Green'’s function for one-
dimensional system using 2 independent solutions of the
homogeneous equations

Consider two independent solutions to the homogeneous equation
Vi (x)=0
where i =1or2. Let
N 4r
Gx,x) =~ A (x)A(x,).
w
This notation means that x_ should be taken as the

smaller of x and x' and x_ should be taken as the larger.

"Wronskian": W = %@ xX)-¢ (x)%,

Beautiful method; but only works in one dimension.
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Orth 1 function expansions and Green’s functions

Suppose we have a “complete” set of orthogonal functions {u, ()} defined in the
interval x; < x < x5 such that

2
/ Uy ()t () A =i
£

‘We can show that the completeness of this functions implies that
oo
3 tn(@)un(a’) = 3(a — ).
n=1

This relation allows us to use these functions to represent a Green’s function for our
system. For the 1-dimensional Poisson equation, the Green’s function satisfies

1/22/2019

Orthogonal function expansion -- continued

Suppose the orthogonal functions satisfy an eigenvalue equation:

2

—u,(x)=—a,u, (x
o ,(X) 14, (X)
where the functions u,(x) also satisfy the appropriate boundary

conditions, then we can construct the Green's function:

G, ) = 47y e ()

an
Check:
2 _ v
d _G(x,x") = 4HZM =47 u, (X, (x')
dx” - a, "
=—475(x—x)
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Example
For example, consider the previous example in the interval
—a<x<a:
0 for x<—-a
() = -p, for —a<x<0
+P

, for 0<x<a

0 for x>a

We want to solve the Poisson equation with boundary condition
d®(—a)/dx=0and d®d(a)/dx=0. We may choose

u,(x)= \/Isin([zr‘;&j and the corresponding Green's function
a a

. ([2n+1zx) . ([2n+1]zx'
e 20 " e
Glr,x)=-Z y

)= zo ([2“1];:]2
2a
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Example -- continued
This form of the one-dimensional Green's function only allows us to find a

solution to the Poisson equation within the interval —a < x<a from

(x)= Lj dx' G x)p(x) + C,
4ng, 7

([Zn + l]ﬂxj

1
=®O(x) = 16"207([2“1]”) b

choosing C, so that ®(—a) =0.
0 for x<—-a
P (xta) for —a<x<0
2¢,
Exact result: @(x)= 7&()(7[1)2 " p(,az for 0<x<a
2¢, o
Loy for x>a
&
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Example -- continued

[2n +1]zx
1

O(x) =" 16 7+7
)= ,,z(; ([2n+1]z) 2
A
3
t
i | of 2
1/23/2019 PHY 712 Spring 2019 — Lecture 4 1

Orthogonal function expansions in 2 and 3 dimensions

VO(r) =

“Zm(r) F0(r) , I'O(r) _ o0,
OX

oy’ oz*

Let {u” (x)}, {v” (y)}, {w” (z)} denote complete orthogonal
function sets in the x, y, and z dimensions, respectively. The

Green's function construction becomes:

Gy 2,27 — 4y HECWL O, (0, @ (2

o o+, 4y,
where
. —u,(x) = —au,(x), i v, (x)=-,(»), and d—zw (2)==y,w,(2)
2 Uy & 5V V() R VuWal2).
(See Eq. 3.167 in Jackson for example.)
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Combined orthogonal function expansion and
homogeneous solution construction of Green’s function
in 2 and 3 dimensions.

An alternative method of finding Green's functions for a second order

ordinary differential equations (in 1 dimension) is based on a product of

two independent solutions of the homogeneous equation, ¢ (x) and ¢,(x):

__ 4
¢, 4 _ 449’
A

where x_ denotes the smaller of x and x'.

G(x,x")= K¢ (x_)p,(x.), where K =

For the two and three dimensional cases, we can use this
technique in one of the dimensions in order to reduce the
number of summation terms. These ideas are discussed in
Section 3.11 of Jackson.
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Green’s function construction -- continued
For the two dimensional case, for example, we can assume that the

Green's function can be written in the form:

G(x,x,y,y) = D u,(0)u,(x)g, (v, ).
The y dependence of this equation will have the required

2
behavior, if we choose: |:—a“ + %} g, ny)=—475(y -y,

which in turn can be expressed in terms of the two independent

solutions v, (¥) and v, (y) of the homogeneous equation:

42
{W—%}Vﬁ, (»)=0,
v, -V

. d dv,
and the Wronskian constant: K, = =V,
dy " ' dy

V"]
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0* . ,
[*an + fz}gn(y,y )=—4n5(y-»),
oy

.Y 4
g,(ny)= X v, ()

n

2
where: {dz 7a":|vm(y):0,

dy
dv, dv,
and K, =—"v, —v, —=
dy " ' dy

For example, choose v, () = sinh(

Ja,y) and v, (v)=sinh(J/a, b))

where K, = \/a—”sinh(\/a—”b)

using the identity: cosh(r)sinh(s) + sinh(r)cosh(s) = sinh(r + 5)
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Example:

b

Two dimensional box with sides a and b with boundary
conditions:  @(0,y)=®d(a,y)=d(x,0)=d(x,b)=0
(r)=—— [ @ pE)Gr,r) +
A Know this term
Don't kndw this ter!

%j P [G(r, e )V (")~ O(r)V' G(r,r )] - F.
A N

4
Glxx' v,y = Y u, (), (x')fvn, (v, ().

n
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Example:

b

Two dimensional box with sides a and b with boundary
conditions: @(0,y)=®d(a,y)=d(x,0)=d(x,b)=0

For this type of problem, it is prudent to construct G(x,x", y, y")
so that it vanishes on the boundary:
G(x,x',y,0) = G(x,x',y,0) = G(x,0,,y") = G(x,a,y,b") =0
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Gl .v") = it (0, () 20, ()7, 02

n
2

%u"(x) =-a,u,(x) where u,(0)=u,(a)=0

\/5. (nzrxj (n;rjz
=u,(x)=,|—sin| — a,=|—
a a a

d? nr ) ’

|:7dyz *(7) } (»=0

(y)zsinh(ﬂy] (y):smh(ﬂ(b_y))
a ° a

K, = Esinh[@]

a a
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Green'’s function construction -- continued

G(x,x',y,y) =D u, (), (XK, (v v, (7).

For example, a Green's function for a two-dimensional rectangular system
with 0 < x <a and 0 < y <b, which vanishes on the rectangular boundaries:
. sin(@jsin { nrx )sinh(@jsinh(ﬂ(b - y>)]
a a a a
nri ’

G(x,x" y,y") = SZ

n=1
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Ta

D(r) :ij.ycfr'p(r NG(r,r') +

%j P [G(r, e )V (") - O(r')V' G(r,r )] - F.
s

Y sin(@] sin(n”x jsinh(nﬁy< )sinh(ﬂ(bfy)}
G(x,x',y,y)=8)" = = 2 “ -

et nsinh(@]

a
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. sin(—n”x)sin(—nﬂx ]sinh(Lry< jsinh [M(b - y>)]
a a a a

G(x,x',y,y) =83 —
=t nsinh —]

Example:  p(x,y)=p, sin(ﬂjsin(ﬂ
a
o= | @ pr)G(rr)
4, p ’
In this example, only n=1 contributes because

jﬂdx'sin[ﬂjsin(—mm ): 551”
0 a a 2

8 a . [ nx
O(x,y)=—L—— sin| == |x
() 4z¢, 2sinh(7ra / b) ( a ]

{sinh[Mdey'sin [L)ﬂ)sinh(”—yl] + sinh(ﬂ]fdy'sin(”—yljsinh[M]]
a ° b a a ), b a

272 .
When the dust clears: D(x,y) = &Za,ibzsin [Q)sin [QJ
¢ m(a +b7) a b
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A useful theorem for electrostatics
The mean value theorem (Problem 1.10 in Jackson)

The “mean value theorem” value theorem (problem 1.10 of your textbook) states that the
value of ®(r) at the arbitrary (charge-free) point r is equal to the average of ®(r’) over
the surface of any sphere centered on the point r (see Jackson problem #1.10). One way
to prove this theorem is the following. Consider a point r’ = r + u, where u will
describe a sphere of radius R about the fixed point r. We can make a Taylor series
expansion of the electrostatic potential ®(r’) about the fixed point r:

B(r +u) = B(r) +u-VI(r) + %(U-V)Qd)(r)+%(u-v)sz(r)+%(u-v)4<1>(r)+v -
) ) ' 0

According to the premise of the theorem, we want to integrate both sides of the equation
1 over a sphere of radius R in the variable u:

2m +1
/ dsS, = R? / dé, / dcos(8,,). 2)
sphere Jo J-1
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Mean value theorem - continued

‘We note that
2n 41
R2/ d¢u/ dcos(0y)1 = 4TR?,
o =
 pon +1
RZ/ dd;u/ dcos(fy)u -V =0,
o 1
gen +1 o amRS
R‘/ dwu/ deos(Bu)(u- V)2 = T g2,
o -1 3
2m +1 ‘
R’/ déu/ dcos(8u)(u- V) =0,
o -
and

e RS
R”/ dm/ deos(Bu)(u- V)t = T g1,
o i

5

Since V2 (r) = 0, the only non-zero term of the average is thus the first term:

x "
RZ/ dbu /+ deos(0,)B(x + u) = drR2®(r),
o -

or

T .
a(r) = R1/ dn/d 0.)®(r + 57/ ASuB(r + ).
0= 7 [ do [ deope = o [ asiate

Since this result is independent of the radius R, we see that we have the theorem.
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Summary: Mean value theorem

_ 1 2
d(r) _WIR dQ d(r +u)

4
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