Electrodynamics — PHY712
Lecture 5 — Introduction to numerical methods

Reference: Chap. 1 & 2 in J. D. Jackson’s textbook.

1. Finite difference methods with 2-dimensional example (Section 1.13
of your textbook)

2. Finite element methods with 2-dimensional example (Section 2.12

of your textbook)

Future topics

1. Method of images for planar and spherical geometries

2. Special functions associated with the electrostatic potential 1n vari-

ous geometries
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Numerical methods to solve Poisson and Laplace equations; Finite difference
methods

The basis for grid-based finite difference methods is a Taylor’s series expansion:

1 1 1
O(r+u) = <I>(r)+u-V<I>(r)+E(U-V)QCI)(I')Jrg(u-V)BCI)(r)JrE(u-V)‘LCI)(r)Jr- L
(D)
For the 2-dimensional Poisson equation we have
0° 0 p(z,y)
—+—= | P = 2
(axg + 8y2> (z,y) - (2)
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Examples of 2-dimensional regular grids on a square with /» denoting the spacing
between grid points

®(x.2h) = 0 P(x,4h) =0
~ o~
0.2h (h.2h) Ah.2 ————F—F—d
" N NG
03— )p——F——ny——
S o =
- Il I 1
[l = o~ /;.
~ S . o
= (0n) (nn) i) & O——r—O—3
& e © =
O ——)——)—h——)
A o\ -
() ——6) oo
D(x,0) =0

Pd(x,0)=0

3 x 3 grid for solution of the Poisson 5 x 5 grid for solution of the Pois-

equation within a 2-dimensional : o , :
son equation within a 2-dimensional

square.
square.
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Finite difference example for a 2-dimensional square

We will work out some explicit formulae for a 2-dimensional regular grid with A
denoting the step length. We note that a sum of 4 surrounding edge values gives:

Sa= O(x+ h,y)+ P(x—h,y) +P(x,y+ h)+ P(z,y — h) (3)

82 82 h4 84 84
_ 2 6
= a0o) 1 (s + ) W)+ g (Gt g ) B+ ()

Similarly, a sum of 4 surrounding corner values gives:

Sp = ®(x+h,y+h)+®(@—h,y+h)+2(xz+hy—h)+2(x—hy—h) (4)
92 52 ht /9t ot 52 52

= 4P 2h? o 6— —— | B(x, ho..))

@)+ 2 (54 5 ) @)+ (g b g + 6555 ) ) + (1)

We note that we can combine these two results into the relation

1 3h% _, h* oo 6
Sa+ ZSB = 5®(x,y) + 7V O(x,y) + gv Ve®(x,y)+ (h°...).  (5)

This result can be written in the form;

1 1 3h? h4
i) _ = _ — + 2 . 6
(xvy) 5SA QOSB 1080 P(flfay) 4080 p('xay) ( )
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Finite difference example for a 2-dimensional square — continued

Equation derived above:

3h? h4
p(z,y) + mvzp(ﬂ% y). (7)

1 1
b B S <N
(z,y) = £54 = 5558 10e,

In general, the right hand side of this equation 1s known, and most of the left hand side of
the equation, except for the boundary values are unknown. It can be used to develop a set
of linear equations for the values of ®(x, y) on the grid points.

For example, consider a solution to the Poisson equation in the square region 0 < z < a,
0 < y < a with boundary values ®(x,0) = ®(0,y) = ®(a,y) = 0and ®(z,a) = 0 and
with the charge distribution

x,1Y) = posin i sin i for 0<x<a and 0<y<a. (8)
P P o .

It can be shown that the exact potential for this case 1s given by

2
poa” 1  /mxN . /Ty
O(x,y) = Zo 53 Sin (_a ) sin <—a ) : 9)
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Finite difference example for a 2-dimensional square — continued

We will first analyze this system with a mesh of 9 points generated with a grid spacing of
h = 5. In this case, ®(h, h) = ®(35, §) is unknown, while the 8 boundary points are

299
zero: ®(0,2h), ®(h, 2h), B(2h, 2h), B(0,0), B(h,0), ®(2h,0), B(0, 1), ®(h, 2h).
d(x,2h) = 0
0,2 @ 2h,2
(023 (20 @
o
) I
I N
2 (o) (n0) DE
3 <J b NS
&
0) (1.0) fh
0,0 U ,0
P(x,0)=0

3 x 3 grid for solution of the Poisson equation within a 2-dimensional square.
WAKE FOREST PHY 712 Lecture 5 - 1/25/2019

UNIVERSITY




Finite difference example for a 2-dimensional square — continued

For this example, Eq. 7 states

d(h,h) = 3h7 (h,h) + h—4v2 (h,h) (10)
TIPS

Evaluating this result for our example, we find

2 2
a a PoQ 3 T
P =Q(—,—) = — : 11

In this case, the constant in the parenthesis 1s 0.044 compared with 0.051 for the exact

results.
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Finite difference example for a 2-dimensional square — continued

a
Z,

of the system ®(z,y) = ®(a — z, y), we have now 6 unknown values {®(h, h),
®(2h, h), ®(h,2h), ®(2h,2h), ®(h,3h), P(2h,3h)}.
P(x,4h) =0

O—O—O—O—©

If analyze this same system with the next more accurate grid, h = %, using the symmetry

O
o -
I [l
Z O——ar—O—nd
© &
B———O—©)
————@

d(x,0) =0

H % H erid for solution of the Poisson equation within a 2-dimensional square.
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Finite difference example for a 2-dimensional square — continued

This results in the following relations between the grid points:

3 (h, 3h)—%(<1>(h, 4h) 4+ ®(0, 3h) + ®(2h, 3h) + ®(h, 2h))

1 3h? 4
— —(D(0,4h) + ®(2h,4h) + ®(2h, 2h) + ®(0,2h)) = p(h,3h) + VZ2p(h, 3h).
20 10eg 40¢0
(12)
1
d(2h, 3h)—g(<1>(2h, 4h) + ®(3h, 3h) + ®(h, 3h) + P(2h, 2h))
1 3h? 1,
— —(®(h,4h) + ®(3h,4h) + ®(3h, 2h) + B(h,2h)) = p(2h, 3h) + V2p(2h,3h)
20 10e9 400
(13)
1
&((h, 2h)— = (®(h, 3h) + &(0, 2h) + ©(2h, 2h) + &(h, h))
1 3h? ht _,
— —(®(0,3h) + ®(2h,3h) + ®(0,h) + ®(2h, h)) = p(h,2h) + V2p(h,2h).
20 10eg 400
(14)
1
®(2h, 2h)—g(<1>(2h, 3h) + ®(h, 2h) + ®(3h, 2h) + ®(2h, h))
1 3 2 4
— —(®(3h,3h) + ®(h,3h) + ®(3h,h) + &(h, h)) = p(2h, 2h) + V2p(2h,2h).
20 109 40e0
(15)
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Finite difference example for a 2-dimensional square — continued

(h, h)—é(@(h, 2h) + B(0, h) + B(2h, h) + B(h, 0))

2 h4

1 3
— —(®(0,2h) + ®(2h, 2h) + ®(0,0) + ®(2h,0)) = p(h, h) + VZ2p(h, h).
20 10eg 400
(16)
1
®(2h, h)—g(CI)(Qh, 2h) + ®(3h, h) + ®(h, h) + ®(2h,0))
1 3h? 1,
— —(®(h, 2h) + ®(3h,2h) + ®(h,0) + &(3h,0)) = p(2h, h) + V2p(2h, h).
20 10eg 40¢e¢

(17)
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Finite difference example for a 2-dimensional square — continued

These equations can be cast into the form of a matrix problem which can be easily solved using Maple:

(

\

1
—2/5
~1/5

~1/10

0

0
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~1/5
1

~1/20

~1/5
0

0

~1/5
—1/10
1
—2/5
~1/5

~1/10

—1/20 0 0
~1/5 0 0

~1/5 —1/5 —1/20

1 ~1/10 -1/5
~1/20 1 ~1/5
~1/5  —2/5 1

)

[ ®(h,3h) )
®(2h, 3h)
&(h, 2h)
®(2h, 2h)

&(h, h)

\ ®(2h,h) |
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(0008893085722 )
0.01257672244
0.01257672244
0.01778617144

0.008893085722

\ 0.008893085722 |
(18)
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Finite difference example for a 2-dimensional square — continued

The solution to these equations and the exact results are found to be:

[ ®(h,3n) \ [ 0026600951 ) [ 0.025330296 \
B(2h, 3h) 0.037619426 0.035822448
O (h, 2h) 0.037619426 | o 0.035822448 | o
= ; (exact) = . (19)
®(2h, 2h) 0.053201903 | ©° 0.050660592 [ ©O
O(h, k) 0.026600951 0.025330296
\ ®(2h,h) |\ 0.037619426 | \ 0.035822448 |

We see that the results obtained with a smaller mesh has is much closer to the exact results than those for the
larger mesh.
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Introduction to Finite element method

The finite element approach 1s based on an expansion of the unknown electrostatic
potential in terms of known grid-based functions of fixed shape. In two dimensions,
using the indices {¢, j } to reference the grid, we can denote the shape functions as
{¢i;(x,y)}. The finite element expansion of the potential in two dimensions can take the
form:

O(z,y) = Z%j@j (z,9), (20)
]

where 1);; represents the amplitude associated with the shape function ¢;;(x,y). The
amplitude values can be determined for a given solution of the Poisson equation:

V2 (®(z,y)) = © (Z(’)y), 21)

by solving a linear algebra problem of the form

> Myijis = G, (22)
1j

where

Myps; = / iz / dyV by (2, y) Vi (2,y) and Gy = / da / dydu (@, 1) p(@.y)/o.

UNIVERSITY
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Introduction to Finite element method — continued

In obtaining this result, we have assumed that the boundary values vanish. This will be
ensured by our choice of the functional form of the shape functions ¢;;(z, y). In order
for this result to be useful, we need to be able evaluate the integrals for My, ;; and for
(G;. In the latter case, we need to know the form of the charge density. The form of

My, ;5 only depends upon the form of the shape functions. If we take these functions to
be:

Qbij (ZE, y) = A& (x)yj (y)> (24‘)

where

(1—@) forx; —h<x<zx;,+h
, (25)
0 otherwise

and Y; (y) has a similar expression in the variable y.

WAKE FOREST PHY 712 Lecture 5 - 1/25/2019

UNIVERSITY

14



Introduction to Finite element method — continued

Finite element basis functions in this case

(1—@) forz, —h<zxz<z;,+h

0 otherwise
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Introduction to Finite element method — continued

The matrix function takes the form:

42X, (z) dX;(z) dYi(y) dY;(y)
My, = | d d : X ()&
i = [do [y | TRy )3, 0) + ()2 D
(27)
There are four types of non-trivial contributions to these values:
:IJ,L—|—h 1
[ @@prar=n [ (- juh?au= 2 28)
:Bi—h —1 3
:131+h 1 h
[ @@X@)de=h [ (- wudu=, 29)
z;—h 0 6
wz—l—h . 2 1
/ (dzﬂ(@) do — l/ du = 27 (30)
x;—h dx h -1 h
and . )
T+ ) . _
[ (e @)y, L[, 51
z;—h dx dx h Jo h
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Introduction to Finite element method — continued

The basic equations lead to the following distinct values for the matrix:

i

% fork=dand ! =
Mpiij =4 —5 fork—i==xlandlorl—j ==+l (32)
0 otherwise

For problems in which the boundary values are 0, Eq. 22 then can be used to find all of

the interior amplitudes ;.
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Introduction to Finite element method — continued

For the same example we studied before using the 5 x 5 grid, the finite element approach
for this problem thus can be put into the matrix form for analysis by Maple:

[ 8/3 —1/3 —1/3
—2/3  8/3 —2/3
~1/3 —1/3  8/3
—2/3 —1/3 —2/3

0 0 —1/3

\ 0 0 —2/3

WAKE FOREST
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~1/3
~1/3
~1/3
8/3
~1/3

~1/3

0
0
~1/3
—2/3
8/3

—9/3
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0 )
0
~1/3

~1/3

[ ®(h,3n) )
B(2h, 3h)
o (h, 2h)
o (2h, 2h)

&(h, h)

\ ®(2h,h) )

[ 0.028181825 )
0.039855120
0.039855120
0.056363651

0.028181825

\ 0.039855120 )

POG

€0

(33)
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Introduction to Finite element method — continued

The solution to these equations and the exact results are found to be:

([ ®(h,3h) \ [ 0.0266572706 ) [ 0.025330296 )
&(2h, 3h) 0.0376990736 0.035822448
& (h, 2h) 0.0376990736 | 0.035822448 | o
= ; (exact) == . (34)
®(2h, 2h) 0.0533145412 | ©0 0.050660592 | C
®(h, h) 0.0266572706 0.025330296
\ ®(2h,h) )\ 0.0376990736 ) \ 0.035822448 )

We see that the results are similar to those obtained using the finite difference approach.
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