PHY 712 Electrodynamics
12-12:50 AM MWF via video link:

https://wakeforest-university.zoom.us/my/natalie.holzwarth

Extra notes for Lecture 22:
Continue reading Chap. 9 & 10

A. Electromagnetic waves due to
specific sources

B. Dipole radiation examples

C. Scattered radiation
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Welcome to the second annotated lecture for PHY 712.  This lecture continues our
discussion of electromagnetic waves produced by sources with reference to Jackson’s
textbook, Chapter 9.
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Mon: 03/23/2020

Radiation from localized oscillating sources
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03/25/2020

|chap. 9 #17
Wed: 03/25/2020 |Chap. 9 Radiation from oscillating sources #18 03/27/2020
Fri: 03/27/2020 |Chap. 9 and 10 Radiation from oscillating sources
Mon: 03/30/2020 |Chap. 11 Special Theory of Relativity
Wed: 04/01/2020 |Chap. 11 Special Theory of Relativity
|Fri- 04/03/2020  |Chap. 11 ISpecial Theory of Relativity | |
[Mon: 04/06/2020 [Chap. 14 [Radiation from accelerating charged particles | |
Wed: 04/08/2020 |Chap. 14 Synchrotron radiation
Fri: 04/10/2020 |No class Good Friday
Mon: 04/13/2020 |Chap. 14 Synchrotron radiation
Wed: 04/15/2020 |Chap. 15 Radiation from collisions of charged particles
[31[Fri: 04/17/2020 Chap. 13 Cherenkov radiation

Mon: 04/20/2020

Special topic: E & M aspects of
superconductivity

Wed: 04/22/2020

Special topic: Aspects of optical properties of
materials

|Fri: 04/24/2020

Mon: 04/27/2020

Wed: 04/29/2020

Review

03/25/2020
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The new assignment #18 builds on the analysis from the previous homework (#17)..




Online colloquium on Wednesday (today) —
https://www.physics.wfu.edu/events/rick-matthews-41-years/

Online Colloquium: “41 Years of Teaching and
Technology”

Dr. Rick Matthews

Professor of Physics and

Director of Academic and Instructional Technology

Wake Forest University

Wednesday, March 25, 2020 at 3:00 PM

Video conference link: https://wakeforest-university.zoom.us

/my/matthews.rick

Note: this is an online Zoom presentation. If you have not used Zoom
recently, click on the above link to join about ten minutes early to be
sure the necessary software installs itself.
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Remember to link to the first online colloquium from Professor Rick Matthews at 3 PM.



Your questions —

From Trevor:
1. How exactly do we find rho(r,omega) if we're given rho(r,t)? On
the homework | just assumed that we would use a fourier transform,
but | wasn't 100% sure at the time.
2. On slide 17, could you please explain what method was used to
find the time averaged power in this example? | know that there are
different ways to calculate it, and | was having trouble seeing which
one is used here.

From Surya:
1. In Jackson, scalar electric potential in Lorentz gauge and the
long-wavelength limit is given by;
¢(r)=eikr/4ns0r2* n.p(1-ikr) (exercise 9.2). Is this same as last
equation of slide 11? (Perhaps 9.57)

From Laxman:
1. Slide 17: How is the time averaged power calculated?
2. How do the diagrams in slide 18 represent time averaged powers
at different angles?
3. Slide 23: Have we used this expression of scattering cross
section before?
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Some answers —
Question: How exactly do we find rho(r,omega) if
we're given rho(r,t)? On the homework | just assumed
that we would use a Fourier transform, but | wasn't
100% sure at the time.

Comment:

03/25/2020

In general, if you know p(r,?), the Fourier transform

in the time domain is defined:  p(r,®) = 2L I dtp(r,t)e’
T —0

The inverse transform is : p(r,0)= J' dop(r,w) o

Unfortunately, details vary among texts (even within texts) about
factors of 27 and "forward" vs "backward" transforms. In your

—iot

homework, the focus was on a single term of p(r,w)e".
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Some answers —
Question: In Jackson, scalar electric potential in Lorentz
gauge and the long-wavelength limit is given by;
¢(r)=eikr/4ne0r2* n.p(1-ikr) (exercise 9.2). Is this same
as last equation of slide 11? (Perhaps 9.57)

Comment: Yes, these are the same, after correcting a
typo. (Thanks for catching it. Slide 22 Lecture 21 is now
corrected.)

From slide 11 after correction:

. . ikr
B(r,0) = p(a))-f'(lJréje

4re, r

From Jackson problem 9.5:
ikr

d(x) =

dre,r’ n-p(1=ikr)
0
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Some answers —
Question: On slide 17, could you please explain what
method was used to find the time averaged power in this
example? | know that there are different ways to
calculate it, and | was having trouble seeing which one is
used here.
Slide 17: How is the time averaged power calculated?

Comment: These details are presented in Jackson

section 9.2  The following slides go over some of the
equations.
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Power in the dipole approximation; Section 9.2 of Jackson

Here we use our notation ~ with n—>rand Z, = L)
S
P r’ . A\
d—Q:?m (r(ExH ))
Using the expressions for the dipole fields far from the source:
ck® . e .
H=——-/(rxp)— E=ZHxr
4 ( p) r ‘
. AP *Z, 41/« AP
The power can be written ——= ﬁk ‘((r X p) X r)‘
Defining the angle 8 by p-r = |p| cos 4,
P c*Z,

2
7 2
- = K*lpFsin@ integrating over solid angles P = <20 k*
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Question: 2. How do the diagrams in slide 18 represent
time averaged powers at different angles?

Polar plot:
Angle indicates
values of theta .

Radius indicates
value scaled to 1.
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Slides from original lecture --
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Review:
, |
Maxwell’s equations
Microscopic or vacuum form (P =0; M =0):
Coulomb's law : V-E=p/eg,
1 OE
Ampere- Maxwell'slaw: VxB-— aa— Hod
¢’ ot
B
Faraday's law : VXE+ % =0
No magnetic monopoles: V:-B=0
1
=’ =
03/25/2020 (:;HQ(éfZOS 2020-- Lect 22 1"

First we need to review the equations and results from last time. Here we are working
with Maxwell’s equation for the E and B fields responding to sources as characterized by

their charge and current densities. It is assume that polarization and magnetization is zero.
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Review:

Formulation of Maxwell’'s equations in terms of vector and
scalar potentials:

Lorenz gauge form -- require: V-A, +L2 ag)L =0
c ¢
1 o°®
~-V’0, +C—2 8t2L =p/ &,
1 0°A
—VzAL +C—2 atzL :,UOJ
OA
B=VxA E=-VO- 6_
t

Note that the Lorenz gauge is consistent with the

source continuity condition: M +V.J (r,t) =0
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It is convenient to analyze the equations in terms of the scalar of vector potentials using
the Lorenz gauge.



Review:
Electromagnetic waves from time harmonic sources

Charge density:  p(r,7)= iR(,B(r, a))e"'a”)
Current density:  J(r,¢)= m(j(r’ w)eficot)
= Scalar potential :  ®(r,¢)= m(cf(r’ a))e—iwr)
= Vector potential: A(r,)= iR(K(r, a))e—iwt)

For k=2
c
N N ik‘r—r"
D(r,w)=D,(r,m)+ jd3r'—,5(r',w)
TTE, ‘r —r"
ik|r—r'|

I
-
S
+
|

Alr,0)=A,(r,0) o J.d3r'e 'j(r',a))
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We will consider sources with pure harmonic time dependence with the notion that any
real source can be represented by a linear combination of these pure sources via a Fourier
transform.



Review:

Electromagnetic waves from time harmonic sources —

continued:
Useful expansion :
ik‘r—r"
472_‘1_ r‘ ZkZJl kr )hl kr)lm() ( )

CD(r,a))— o(r>a))+z¢zm(”’a) lm(r)
7 (rw)=% ja”r' (e, ), (ke (kr ()
K(ra) o(r, o)+ Zalmra))Y

a, (r,0)=iku, I d*r'I(r', ), (ke Y, (kr )Y 1 (7))
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This identity was introduced last time, allowing us to represent the scalar and vector
potentials as a spherical harmonic expansion.
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Review:
Forms of spherical Bessel and Hankel functions:

o= ()=

X X

X x
Asymptotic behavior:

x<<l1 :>j,(x)z

x>>1 = h(x)~(-i
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jile)=S2x) oo =1
1)~ 2 Lsinte)- 2 - 12

These results are given in Jackson’s text.
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Example of dipole radiation source

~

J(r,o)=2J,e""" plr,o)= ‘.]" cos e
—IoR

Z(I‘, a)) = ijO (lk:uo )_[ ’,.'2 dr'e_r'/RhO (kl"> )JO (kl"<)
0

[e'e]

D(r,w)=— gJZj; Ccos HJ. r?dr'e™ *h(kr, )j, (kr.)
0 0

ikr 1

0
ikr 2p2
R e 2Rk"R
zzt]oﬂo_ﬁ
r>R b (KR* +1)
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A(r, ) =2J 1, (ek—rj.r'dr e R sin(kr') + _smk(:cr) J.r'dr 'e’r'/R“"‘”'j

An example of using the spherical harmonic expansion to analyze “exact” expressions for

the scalar and vector potentials.

16



Example continued

0.3
0.21 |e= asymptotic

0.1
0 /\ . N\ /\'\_//—\\._./

Re(A(r,m))

-0.17 ¥
~0.21 == exact
V.57
0.4
0.3
0.2
0.11
01
0.1 1 20 30
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(r.o))

<L

m(

Comparing the values of the vector potential calculated using the asymptotic expansion
(r=>infinity) with the exact evaluation. You see that the difference occurs only within the
source extent.



Review:

Electromagnetic waves from time harmonic sources —
continued:

Dipole radiation case:

Define dipole moment at frequency w:

p(w)stSr rp(r,o) :—i d’r J(r,0)

For fields outside extent of source and k7' << 1 within the source:

A(rw)=-21%p (o)

4 r
H . ikr
= ik . i e
O(r,w)=- p(w)f|1+—|—
4re, kr ) r
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In the long wavelength limit, the dipole approximation is numerically close to the physical

situation.
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Review:
Electromagnetic waves from time harmonic sources — continued:

E(r,a)) = —V(i)(r,a)) + ia)A(r,a))

= 1 i{kz ((f‘xp(w))xf‘) +£3f'(f'-p(w2)) _p(w)J(l —ikr)}

drg, r r

ﬁ(r,w) =V x f&(r,a))
1 ikr

= e—kz(fxp(w))[l—ij

dre,c r ikr

Power radiated for kr >>1:

2
™ e =gt (R () B (r.0)
k. .2
= 2 g—z‘(rxp(a)))xr‘
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Continued analysis of vector and scalar potential fields following Jackson Section 9.2.
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Properties of dipole radiation field for kr >>1:

ikr
l~<3(r,a)):41 © (kz((f'xp(a)))xf‘))
zE, ¥
ikr
B(r.0)=—— <k (Fxplo) |
drec” 1

Power radiated for kr >>1:

2.4
9P _ sy =K |t
dQ “ 3277\ &,

(f' X p(a)))x f"z

Example:
r o
Note that vectors r, E, B
are mutually orthogonal
X
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Geometric properties of dipolar fields.
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Alternative approach
Fields from time harmonic source:

_ 1 eik\r—r'\
D = d’r' 5 (r'
(r’a)) 472'80". r-lr_rv‘p(r’a))
A Hy 3 vel e '
A =—
(r,0) 4”Idr ‘r_r"J(r,a))
Forr >>r': lr—r'|xr—r-r'+..

T 1 eikr 30 _—iktr' ~(_ .y
D(r,m)= TJ.d r'e pr.)

4re,

ikr
A(r,a)) ~ f_;eTJ'd3r. o j(r',a))
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Up to now, we have worked with the exact spherical harmonic expansion, evaluating the
results in certain limits. Now consider analyzing the Green’s function integral directly
without use of Bessel functions. You may recognize this treatment as the Born
approximation encountered in quantum mechanical scattering theory.



For our example:

~

J(r,o)=2J,e""" plr,o)= To_cose 't

=>»Results equivalent to Bessel function expansion
in the limit kr 2 ©°.
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This approach is similar to the Bessel function expansion if more terms were used.
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Other radiation sources using

““alternative approach”
z

Linear center-fed antenna \ 0

P 28

A(r,a)) ~

ikr
Z_Oe_J'aﬂr. ok j(r', a))
Tr

J(r',®)=1,sin (%—k F: |j§(x)5(y)i
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Up to now, we have been thinking about sources on the atomic scale.

The analysis also

works for macroscopic sources such as antennas. This example which follows your

textbook is called a center fed antenna.
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Alternative approach — linear center-fed antenna continued
ik d/2

- ul y o
A(r,a))zz’uo 0 & j dz" e kes(9)z sm(ﬁ—ﬂzwj
dr r 3, 2

(kd j (kd)
& | cos| ——cos@ |—cos| —
:2 /UOIO € 2 2

27 kr sin’ @

Time averaged power:

kd kd \[
cos| —cos@ |—cos| —
dP—12 /& 1 2 2

o’ g, 87’ sind
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Analyzing the vector potential in this “Born” approximation, we obtain an analytic result for
the radiation distribution.



Alternative approach — linear center-fed antenna continued

Time averaged power:

(kd j (kd]z
cos| —cos@ |—cos| —
a’P_[2 fﬂ 1 2 2

0

== . :
&, 87 sind

dQ

cosz(ﬂcoséj
for kd =rx: d—P=12 ) ! 2
dQ "\ g,

871° sin’® @
4P 4 cos’ (72[ cosS 6’)
for kd=27: —=1 Lac > —
dQ &, 87w sin” @
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The radiation pattern is quite sensitive to the relationship between the antenna length d
and the wavelength of the radiation.



Alternative approach — linear center-fed antenna continued

Time averaged power:

kd kd
cos| —cos@ |—cos| —
2 2

dQ °\ g, 877 sind

03/25/2020 PHY 712 Spring 2020-- Lecture 22 26

Here are some polar plots of the radiation patterns for various cases.
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Another source of radiation —
Radiation due particles reacting to incident
electromagnetic waves — scattering processes
Chapter 10 in Jackson
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Now consider another radiation source — scattered light. We will introduce the topic
(covered in Chapter 10) today, but discuss it more thoroughly on Friday.
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Dipole radiation in light scattering by small (dielectric) particles

— @ —E
—_— sC
\ H
l sc
Einc
Hinc
_a ikkyr _ %
Einc - EOEOe Hinc - kO x Einc
Hy€
In electric dipole approximation :
1 ,e" . . 1 .
ESC = k ((rxp)xr) HSC = rXESC
4re, r C
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Imagine a plane wave of light incident on a sphere.

The incident light produces oscillating

dipoles within the sphere which in turn produce dipole radiation.
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Dipole radiation in light scattering by small (dielectric) particles
_—
—— @ — E.
l sc
Einc
Hinc
Scattering cross section :
2A
do AAD A r r.<SSC>avg
— &Ky, &) |=——
dQ ko .<Sinc>avg
A 2
7"2 & Esc k4 ~ ‘2
= = E- p
A 2 2
g E,. (47[50E0)
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The radiation depends on the initial polarization of the scattered polarization.
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Estimation of scattering dipole moment:

Suppose the scattering particle is a dielectric sphere
with permittivity € and radius a:

ele,—1

=4’
P lelg,+2

A ikﬁo-r
E. =g Ee

inc nc

Scattering cross section :

TP B R G
a7 éo‘Emcz (47¢,E,) P
e 8/50—12A 2 P
ele,+2 ’

03/25/2020
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Using results from the electrostatic polarization analysis, we can deduce the polarization
amplitude.



K,

M
=

03/25/2020 PHY 712 Spring 2020-- Lecture 22

A For E;,,. polarized in scattering plane:

¢ 7l i
ﬁ 2 dQ glegy+2

Scattering by dielectric sphere with permittivity € and radius a:

31

We will continue this discussion on Friday, considering the geometrical effects.
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Scattering by dielectric sphere with permittivity € and radius a:
For E;,,. polarized perpendicular to

A

k scattering plane: )
0 dGAA_lA{ . _k465/50—1 Ao P2
0 —\LEK,,E )=k a4 |——— €
A dQ elgy+2
r A A
€y € 2
—0 ele,—1

/ — k4a6

Assuming both polarizations are equally likely, average
cross section is given by :

Eley+2

2
do(. .~ .\ k'a’l|ele —1‘
—( ,s;ko,so)z 0 (cos26?+1)
dQ 2 |elg,+ 2‘
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Scattering by dielectric sphere with permittivity € and radius a:

A
k 4 6 2
0 do (. ¢ . ka|8/80—1| >
—(r,s;ko,so) = (cos 0+1)
0 dQ 2 |e/g,+2|
oY
r A
8 2.0+
N
8 1.8+
1.6
1.4
12
10— T T T T T T T T
0 0 40 60 80 100 120 140 160 180
0
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