PHY 712 Electrodynamics
12-12:50 AM MWF via video link:

https://lwakeforest-university.zoom.us/my/natalie.holzwarth

Extra notes for Lecture 25:
Continue reading Chap. 11 —
Theory of Special Relativity

A. Lorentz transformation relations
B. Electromagnetic field transformations

C. Connection to Liénard-Wiechert potentials
for constant velocity sources
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In this lecture, we will continue our discussion of Special Relativity. In particular, we will
discuss how the E and B fields transform between two relatively moving reference frame.
Using a particular example, we will be able to show that our results for transformed fields
are consistent with the results we obtain using the analysis using the Lienard-Wiechert
potentials discussed earlier.
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The homework #20 assigned last lecture is due on Friday. No new homework has been
assigned.



TODAY
Online colloquium scheduled for Wednesday, April 1, 2020 --

https://lwww.physics.wfu.edu/events/colloquium-microstructure-control-in-organic-and-hybrid-semiconductors-and-

its-impact-on-device-performance

Online Colloquium: “Microstructure Control in Organic
and Hybrid Semiconductors and its Impact on Device
Performance “

Public talk for Ph. D. defense
Mr. Andrew Zeidell, Graduate Student

Mentor: Professor Oana Jurchescu
Department of Physics

Wake Forest University

Wednesday, April 1, 2020 at 3:00 PM

Video conference link: (available starting at 2:50 PM)
https://wakeforest-university.zoom.us/j/534312421
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Please remember to attend the online lecture by Andrew Zeidell who will be describing his
Ph. D. thesis work. Please notice the zoom link mentioned above and on the colloquium
announcement.



Your questions:

From Trevor —
Relating to slide 12, is there a justification for why the tensor F = LF'L?
Because | would have thought, following from the pattern of the other 4-
vectors, that F = LF'. Does it have something to do with the fact that F is
self-adjoint?

From Surya —
Transformation equations shows that purely electric or magnetic fields in
one coordinate system can appear as a mixture of electric and magnetic
fields in another coordinate system. Is there any physical situation in which
magnetic fields purely appear as electric fields?
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Some answers —

Question: Relating to slide 12, is there a justification for
why the tensor F = LF'L? Because | would have thought,
following from the pattern of the other 4-vectors, that F =
LF'. Does it have something to do with the fact that F is
self-adjoint?

Comments: Our analysis leads us to realize the E and B
fields behave as components of a 4x4 matrix instead of as
components of a vector. Given that fact, we can then
assume that the field strength tensor F thus must
transform as a tensor.
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From the scalar and vector potentials, we can determine the
E and B fields and then relate them to 4-vectors, finding --
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Field strength tensor
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E. -B, B,
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PHY 712 Spring 2020 -- Lecture 25




Question: Transformation equations shows that purely
electric or magnetic fields in one coordinate system can
appear as a mixture of electric and magnetic fields in
another coordinate system. Is there any physical situation
in which magnetic fields purely appear as electric fields?

y y’ Transformation equations:
E =E' B.=B'
'V' E =y,(E+BB") B,=y,(B',-BE")
b
q Ez:yv(E'z_IBvB'y) Bz:}/v(B'z-i_ﬂvE‘y)
S x,
X
2 2z’ For our example, B'=0 and £', and F£ 'y are nontrivial
The nontrivial fields in the stationary frame are
E =E'
E)’ = ]/VE ')’
B =y,BE',
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Question: Transformation equations shows that purely
electric or magnetic fields in one coordinate system can
appear as a mixture of electric and magnetic fields in
another coordinate system. Is there any physical situation
in which magnetic fields purely appear as electric fields?

’ Transformation equations:

y| VY
E =L, B.=B'
b 7 EyZJ/V(E'y+,BVB'Z) By:%(B'y—ﬁ’vE'z)
q Ezzyv(E'z—ﬂvB'y) BZ:}/v(B'z'i'ﬁvE‘y)
) G
z /7

Comment: From the equations, it appears impossible to
make a “pure” electric field from a magnetic field...
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Slides from original presentation --
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. Convenient notation ;
Lorentz transformations

04/01/2020

v
p.=2
) = 1
v l_ﬂvz
y y’ Stationary frame Moving frame
A
ct = ylct'+px')
= 7/(x'+,Bct')
= v _ '
_____________ X y =y
X7 _.E 5 z = Z'
v
y > X
. X
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We will continue to use the stationary and moving reference frames introduced in the

previous lecture.

In this case, the relative motion is along the x-axis. Of course, there is

nothing special about this choice, but we will use it throughout this lecture.
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Lorentz transformations -- continued
For the moving frame with v =vx:
7. B 00 v —rvnpB 00
0 0O - 0 0
BV: yvﬂv 71/ Bv—l: yvﬂv 71}
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
ct ct' ct' ct
1 xl |
= 'Bv ' ' = 'Bv
Yy
z z' z' z
Notice:
C2t2 _x2 _y2 _Z2 — CZth_XIZ_yVZ_ZvZ
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This slide reviews the transformations of the time and position 4-vector.



Special theory of relativity and Maxwell’'s equations
. . op
Continuity equation: ’ +V-J=0
.\ 1 00
Lorenz gauge condition: — aa— +V-A=0
c ot
: : 1 oD
Potential equations: — =5 — VO =47p
¢ Ot
1 0°A 4
e) ‘ - VA= -
c- Ot c
Field relations: E=-VO- 1A
c Ot
B=VxA

This slide reviews the relevant equations for the continuity of our sources, and for
Maxwell’s equations in terms of the scalar and vector potentials, and for the relationship of
the E and B fields to the scalar and vector potentials.



04/01/2020

More 4-vectors:

Time and position :

Charge and current :

Vector and scalar potentials :
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<

<
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=X

=J¢

{0,1,2,3}

Here we identify 4-vectors of time-position, charge and current sources, and scalar and

vector potentials.
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Lorentz transformations 7o 1A 00
p VB 7 00
' 0 0 10
0 0 0 1
Time and space: X =Lx*=LPx”
Charge and current : JO=LJ=LP I

Vector and scalar potential : 4% = £ 4" = £7 4"

1 )

Repeated index
summation
convention
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It is reasonable to postulate that each of these three 4-vectors transform from one
reference frame to another with the Lorentz transformation.
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4-vector relationships

ct A°
Al
= P & (AO,A): upper index 4 - vector A“ for (a = 0,1,2,3)
Y
z A°

Keeping track of signs - - lower index 4 - vector 4, = (AO ,—A)

Derivative operators (defined with different sign convention):

(5] olde
cOot cOt
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In addition to the 4-vectors we have defined up to now, which are written with an upper
index alpha, we will also need to define a lower index version of the 4-vector which just
means that the space part is taken with a minus sign. We also need a notation for
derivatives with respect to time and space given with the partial symbol. It turns out that
for consistency, the upper and lower signs needed for the derivative operator, the upper
and lower signs must be given as indicated. While Jackson’s conventions are consistent
throughout his text, other textbooks may use other sign conventions.

16



Special theory of relativity and Maxwell’'s equations
Continuity equation: ?3_/; +V-J=0 > 0.J°=0
.\ 1 00 o A% =0
Lorenz gauge condition: T +V-A=0 > ad =
c
2
Potential equations: iz a@? ~V’® =47p
¢ t 4r
2 0,0°4" =—J*
1 OA gp_97, ¢
c- ot c
Field relations: E=-VO - 1A
C 6t > 2?2?
B=VxA
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Here we exercise our new notation to write the important equations.

| have to admit the

new notation looks quite compact, (pretty, intriguing?) But what about the E and B fields,

how does the new notation work for them?
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Electric and Magnetic field relationships
E--vp-104 E, __0® A =—(0°4'-0'4")
c Ot ox cot
:_82_%_ (50/12 82/10)
g oy cot
:_62_8142 — (80A3 83/10)
: 0z cot
B=VxA 04
B = A (g )
oy 0oz
By — an _ a"42 — (83141 61143)
0z Ox
_ 04, _%_ (51/12 62A1)
ox Oy
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Writing out the 6 equations for all of the E and B field components, we see that the new
notation has a very nice pattern, but each field component has two indices!!! We can
thus conclude that the 6 E and B field components are part of a 4x4 matrix or tensor.



Field strength tensor ~ F = (aaAﬂ _5ﬂAa)

0 -E -E -E 0 -E'. -E', -E'
Fab _ E. 0 -B. B o _ E'. 0 -B'. B
"|E, B 0 -B g, B, 0 =B
Y z X l’ 1 '
E. -B, B, 0 E. -8B, B0
Transformation of field strength tensor
7/\) yvﬂv O 0
Faﬂ=£a7F17(5£5ﬂ £= yvﬂv 7/\1 O 0
Y Y h 0 0 10
0 0 01
O _E'x _yv(E'y_i_ﬂvB'z) _yv(E'z_ﬂvB'y)
Fa/} _ E'x O _Q/V(B'z-i_ﬁvE'y) 7/V(B'y_ﬂvE'z
7B +8B.) 7.(B.+BE) 0 - B
}/v(E'z _IBVB'y) _7/\/ (B'y _IBVEVZ) B'x O
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Therefore we can define the field strength tensor and assign each of the 6 field
components and their negative values to an entry in the 4x4 field strength tensor.  From
this logic, we can then deduce that the field strength tensor transforms as a tensor with a
Lorentz transformation sandwich. Evaluating the multiplication of the three matrices, we
obtain the result given on the last line.  This is related to your homework problem due

Friday.

19



Inverse transformation of field strength tensor
e =nB, 00
Frb _ play s p 16 plo ~7.B, Yy 00
b Y ) 0 0 1 0
0 0 0 1
-E, ~7,(E,~B.B.) -7.(E.+BB,)
it _ E, 0 ~7.(B.-B.E,) 7.(B,+BE.)
v(E,~BB.) 7.(B.~BE,) 0 -B,
v.(E.+BB,) -7,(B,+BE.) B, 0
Summary of results:
E ’x = Ex B 'x = BX
E' =7,(E -BB.) B',=7,(B,+BE.)
E'.=y,(E.+5B,) B'.=y,(B.-BE,)
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Using the same logic, it is possible to evaluate the inverse transformation. The last result is
the same as given in Jackson Eq. 11.148.



Comparison of the two transformations

v nB 00
Fab _ par s p b p - nB, 7, 00
” 1o 0 10
0 0 01
0 -2, -p(E+8B.) -y (E.-58)
| B o nlesE) s
(B +pB.) 7.(B+BE,) 0 -8,
r(E.-BB,) ~7,(B,-BE.) B, 0
v, B 00
F' = p -\ prp -1 pio| WP 000
v ' ' 0 0 10
0 0 01
—E 7 (Ey—ﬂBZ) _K'(EZJrﬂvBy)
r_ : 0 ~v.(B.-BE,) 7B, +BE.)
»(E,~BB.) 7(B.-BE,) 0 -B,
v,(E.+BB,) -7,(B,+BE.) B, 0
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Comparing the various transformations.
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Example: Fields in moving frame:
g(=ve'x+by)

E':%(x'fﬁry'y):
r (

/
A y (— vt')2 -l-bz)3 ?
y| VY .
B'=0
—)
v
b
q
= Gt x’
z «//Z°  Fieldsin stationary frame:
EX = E'X BX = B'X
Ey:]/v(E'y-i_ﬂvB'z) By:]/v(B'y_ﬂvE'z)
Ez:yv(E'z_ﬂvB'y) Bz:yv(B'z+ﬂvE'y)
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Now, consider a particular example discussed in Section 11.10 of Jackson. A particle sits
at the origin of the moving frame. The E and B fields are measured at the point b yhat in
the stationary frame. What are the values of the fields measured in the stationary frame?



Example: Fields in moving frame:
1 q { Ja 15 q(_Vt'ﬁJ’_by)
A y E:—'(xx+yy):
y |V r (Cvep+2)"
— B'=0
v
b
q H)
> X X
, Fields in stationary frame:
zv Z |
E_p g(-vr)
X X ((_ vt')z +b2 )3/2
b)
E — 7‘) (E' — Q(j/\/
' (vey +27)"
B. = %(ﬁvE'y): Q(YJ/ZWBVbZ) 72
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It is easy to write the fields in the moving frame, since the particle is stationary in that
frame. Then we use the transformation equations to find the fields in the stationary
frame. We are not quite done, because the expressions involve the time measured in the

moving frame.



Example:
P Fields in moving frame:

A q 3 ~ q(_Vt'ﬁ-i_by)
y E= (3 +5'9)=
y " (v +02)"
f— B'=0
v
b
q J
> X X
, Fields in stationary frame:
2/ = q(-vy,1)
Ex = E‘x = ) /2
vy +0)
Expression in terms of E = (E' )= q(7,b)
consistent coordinates y T ((_th)z +b2)3/2
" _ b
L=y, B, :7v(ﬂvE'y): Q(}/Vzﬁv )2 /2
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Using the time-coordinate transformation we can then write the fields measured in the
stationary frame in terms of the time appropriate to that frame.
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This plot shows the y component of the electric field as measured in the stationary frame

plotted as a function of time. For large gamma, there is a large peak at t=0.
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Examination of this system from the viewpoint of the
the Lienard-Wiechert potentials (temporarily keeping Sl units)
; . 5 . dR (1)
pr,t)=q5°(r—R ()) JI(r,5)=¢R (1) (r-R (1)) Rq(t)=th
D(r,1) = ! r'dt'M5(t'—(t—|r—r'|/c))
4re, lr—r'|
SJ(r! t‘)
A(r,t)= d’r dt t'—(t—|r-r'|/c
()47;60” o Sl lrrlfe)
Evaluating integral over ¢':
* /@)
dt' f(t"Yolt'-(t—|r—R _(t")|/c))= L ,
[ a3 (e=@=lr =R, @) /o)) AR W)
clr-R, ()]

Do these results make sense? In order to check the results, we can calculate the fields
directly in the stationary frame using the methods we discussed several lectures ago using
the Lienard-Wiechert potentials. Here we review some of those equations.



Examination of this system from the viewpoint of the
the Lienard-Wiechert potentials — continued (SI units)
q 1
O(r,t) = —
dme, o _V'R
C
q \4
A(r,t) =
®.1) drec’ p_V'R
C
dR (1)
where R=r-R_(z,) v=—o
dt,
E(r,t) =-VO(r,?) _OAwY
B(r,7) =V xA(r,?)
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More equations.

27



Examination of this system from the viewpoint of the
the Lienard-Wiechert potentials — continued (SI units)

-R > VR RxV/
B(r,1) = 1 2 — 3 l_V_2+V2 - a c2
4re,c v-R c c R v-R
C C
t
B(r.() = RxE(r, )‘
cR
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Finally the E and B fields obtained from that analysis.
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Examination of this system from the viewpoint of the
the Liénard-Wiechert potentials — (Gaussian units)

—Rxv vv Vv-R Rxv/c
B(r:t)zg R 3(1_6_2+ o j_ RV
(== [+
C C
B(r.() = RxE(r,t)‘
R
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E(r,z)=%KRE)@_Q}(RX{R_&)X%
V-Rj c c c c

i
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Here are the equations in cgs Gaussian units that we are now using.

29



Examination of this system from the viewpoint of the
the Liénard-Wiechert potentials — continued (Gaussian units)

2
E(r,t):%{(lz_ﬂ} 1_"_2}} ‘
v-R c c For our example:
k= j R,(,)=v,% r=by
| R=bj—vtk  R=\VE+b
-Rxv v
Br=| R () ok
et -
R-—1=
c -~
This should be equivalent to the result given in Jackson (11.152):
E(x. y,2.0) = E(0,0,0,1) = g— L5 70Y_
(” + ()
B(x, y2,1) = B(0,6,0,1) = g— P2
(5> + (1))
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Now to evaluate the equations, we need to consider the constant velocity trajectory of our
example. We will continue this discussion on Friday.



