PHY 712 Electrodynamics
12-12:50 AM MWF via video link:
https://wakeforest-university.zoom.us/my/natalie.holzwarth

Plan for Lecture 26:

Finish Chap. 11 and begin Chap. 14

A. Electromagnetic field transformations &
corresponding analysis of Liénard-Wiechert
potentials for constant velocity sources

B. Radiation by moving charged particles
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In this lecture we will continue to discuss the electromagnetic fields produced by a moving
charged particle using the Lienard-Wiechert potentials. First we need to make sure that
we obtain consistent results with Lecture 25. Then we will start to discuss the results from
more general trajectories.
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The homework from today’s lecture involves deriving some of the details of today’s lecture.



Inverse transformation of field strength tensor
v, =np 00
Freb — play s p-1op Pl 7.5, 7y 0 0
Y Y Y 0 0 1 0
0 0 0 1
-E, ~v.(E,-BB.) -7,(E.+BB,)
v _ E, 0 -7.(B.-BE,) 7(B,+BE.)
7.(E,~BB.) 7.(B.~BE,) 0 -B,
v.(E.+BB,) -7.(B,+BE.) B, 0
Summary of results:
E' =E, B'.=B,
E',=y.(E,~5B.) B',=y,(B,+B.E.)
E'.=y,(E.+53B,) B'.=y,(B.~BE,)
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Review of the Lorentz transformation for the field strength tensor --



Example: Fields in moving frame:
g(=ve'x+by)

E':%(x'fﬁry'y):
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B'=0
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z «//Z°  Fieldsin stationary frame:
EX = E'X BX = B'X
Ey:}/v(E'y-i_ﬂvB'z) By:}/v(B'y_ﬂvE'z)
Ez:yv(E'z_ﬂvB'y) Bz:yv(B'z+ﬂvE'y)
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This is the example that we have been studying from Lecture 25.



Example: Fields in moving frame:
1 q { Ja 15 q(_Vt'ﬁ—i_by)
A ’ E:—'(XX-i-yy):
y |V r (Cvep+2)"
— B'=0
v
b
q H)
>x X
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x x ((_ vt')z +b2)3/2
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E, =y \E,)= -
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B. = %(ﬁvE'y): Q(YJ/ZWBVbZ) 72
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Using the fields from the moving frame, we can write the expressions for the fields in the
stationary frame.



Example: Fields in moving frame:
g(—ve'x+by)

q n A
A ’ E'=—'(X'X+y'y):
y |V r (Cvep+p2)"
— B'=0
v
b
q H)
> X X
, Fields in stationary frame:
27" (=v.1)
Ex — E!x — q 7/\) /2
(Cvrep )
Expression in terms of E = (E' )= q(7,b)
consistent coordinates y T ((_W t)2+b2)3/2
b
B, :7V(ﬂvE'y): q(}/vzﬁv )2 2
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Here the fields measured in the stationary frame are expressed in terms of the time t
measured in the stationary frame.
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This is a plot shown in Lecture 25 of £, as a function of time.



Examination of this system from the viewpoint of the
the Liénard-Wiechert potentials —(Gaussian units)

E(r,r)—ﬁﬁl‘%ﬁlZ_j}(Rx{(R%jxc%m

-R > VR Ry
Br.y=4 XV 3(l_v_erv2 )_ ><v/c2
. [ [ .
R _ij ( R _ij
c C
B(r.() = R xE(r,?)
R
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Now we consider how we may arrive at the same result without changing reference frames
by analyzing the EM fields produced by a moving charge using the Lienard-Wiechert
analysis.



Radiation from a moving charged patrticle

Variables (notation) :
. dR (z.)
R, (t.)= aftr =V

TZ
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Here we consider a charged particle (charge q) moving along the red trajectory. The vector
r indicates the point at which we will evaluate the fields. The retarded time t, is defined
here.



B(r,t)zg —Rxv
c

c
E(x,y,2,0)=E(0,5,0,1) = q

B(x,y,z,t)=B(0,b,0,t)=¢q

04/03/2020

A

Examination of this system from the viewpoint of the
the Liénard-Wiechert potentials —(Gaussian units)

2
E(r,t) = %KR —ﬂj l—v—zﬂ
R— VRJ ¢ ¢ For our example:
c

R, (t)=vt,x r=by

vz) R =0y -vt X

This should be equivalent to the result given in Jackson (11.152):

—vyix + yby
(6 + )
ypbz
(0 + o))
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R=PE 11

R

vV =1X t,=t——

c

In our case, the trajectory of the moving particle is described as constant velocity along

the x-axis while the fields are measured at the fixed point b along the y axis.
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Some details
E(r,1) =L{(R—ﬂj 1—V—2H
(R— V.Rj c c

] R, ()=vt,x r=by

B ’ — hv — o _ 2.2 2
B(r,) =4 L"j{l"_J R =by —vt X R_m

c (R_V-R ?

For our example:

c
vV =1X t =t—
c

¢t. must be a solution to a quadradic equation:
t—t=—— = =21t +yt —yb /=0

with the physical solution:

. Jopt): + b2
C
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t=y|7

For your homework for this lecture, you are asked to review the evaluations here.

11



Now we can express R as:

Some details continued:
R = y(—ﬁvyt + «/(v;/t)2 +b? )

and the related quantities:
R-VR/c=—-vix+by

/ 2 2
R-v-R/c= (1) +b

Y
VR v? —VvyiX + yby
EOU):LSKR__J 1__2]:|:q 3 4 }/2 )3,/2
(R_V-Rj c c (b +(vyt) )
C
-Rxv v bz
B(r,t):g —S(I_TJ i 7 S\32
(R—V'R ¢ (5 + (1))
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When the dust clears, we do verify the E and B fields obtained using the Lorentz
transformation.
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Radiation from a moving charged patrticle

Variables (notation) :
. dR (z.)
R, (t.)= aftr =V

TZ
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With this success, we are motivated to apply this approach to more general particle
trajectories.
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Liénard-Wiechert fields (cgs Gaussian units):

B(r t) = 2
C

c? c?

In this case, the electric and magnetic fields are related according to

B(r, ) = 2~ g( 2
Rq(tr)E#EV R(tr)Er—Rq(tr)ER v
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~Rxv ( v? V-R)_ R x v/c
(n— =2y

(19)
] )0
2D

Here we review the equations from the Lienard-Wiechert analysis.

We particularly notice

that for the fields very far from the particle positions, the dominant terms are those which

involve the acceleration of the particle.
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Electric field far from source:

B(r, t) = Rx E(r, t)
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c
B(l', ): RXE(I‘,t)
R
~ R v
Let R=— =—
et 2 B . B
E(r.¢ ___{Rx|R-

These acceleration terms are given here. These are the terms that we will focus on. Here

we define a unit vector Rhat. Jackson calls this vector n.

In principle, this unit vector

varies in time, but at large enough distances from the source, it is an approximately

constant unit vector.

15



Poynting vector:

S(r,t)zi(ExB)
t)= 9 R x (R =B )x P
E(r,?) cR(l—B-liT {R [(R B) B]}

B(r, t) =R x E(r, t)
5 2 ﬁx[(ﬁ—ﬂ)xﬂ]z
E(r,/) =—L—R —
47cR (1 —B- R)
Note: We have used the fact that
R- E(r,t)=0

C A
S =—R
(r,t) 4
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In addition to calculating the fields themselves, we will be interested in calculating the
Poynting vector due to the fields in the radiation zone.



Power radiated

__ 9 R
 4ncR? R (1—B-R)6

2

2

o)
dQ - drc (1—B-R)6

ar S.-RR? =

In the non-relativistic limit: g <<1

dP q2 A A .72 qz
—=—"—|Rx| Rx =
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After some algebra, we arrive at the expression for the power radiated per unit solid angle.
We will examine this result more in detail next time, but for now, we will consider the

result in the non-relativistic limit when beta is nearly 0.



Radiation from a moving charged patrticle

Variables (notation) :
dR,(t,)
R, (t, )= aft, =V

TZ
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This slide attempts to show the geometry of the trajectory and fields.
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Radiation power in non-relativistic case -- continued

Blue arrow indicates the
particle acceleration direction
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Here we illustrate the non-relativistic power distribution, showing that the radiation

intensity is concentrated in the directions perpendicular to the particle acceleration.

time we will see how relativistic effects change this radiation pattern.

Next
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