PHY 712 Electrodynamics
12-12:50 AM MWF via video link:
https://wakeforest-university.zoom.us/my/natalie.holzwarth

Plan for Lecture 27:
Continue reading Chap. 14 -
Radiation by moving charges
1. Motion in a line
2. Motion in a circle

3. Spectral analysis of radiation
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In this lecture, we will continue discussing the material presented in Chap. 14 of Jackson’s
textbook on the subject of radiation from moving charged particles.
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The homework problem for this time asks you to estimate the power radiated by a particle
moving in a circular trajectory.



Radiation from a moving JR (t )
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Here is the general diagram we have been using to denote the field point r and the
trajectory R_q(t).



Liénard-Wiechert fields (cgs Gaussian units):
2
w0 = e (0 0) () (o (0 0) <))
R— vL:R) c G c ¢
(19)
_q| -Rxv _v» v:R)  Rxv/e
In this case, the electric and magnetic fields are related according to
Br,1) = =% ]E; 9, @)
: dR (¢ d’R,(t
R()= Tl R )R ()R e TR
dt, dt,
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Review of the E and B fields produced by the moving charged particle.



Electric field far from source:

E(r,?) ) z.R3{R><KR—%j
[+)

B(r, ):in(r,t)

Let ﬁz% BE% BEX

E(r, ()= t _q,;.ﬁf R [R-p)xp]

B(r,t) = Rx E(r,t)

Specializing the equations to fields in the radiation zone.




Poynting vector:

47
E(r,t) = 9 3{ﬁx[(ﬁ—ﬂ)xﬁ]}
cR(l—B-R)
B(r,t)zlixE(r,t)
A 2 lix|: li—B XB:|
S(r,)=—R[E(r,¢)] =—1— )6
4 47cR I_B,ﬁ)
Note: We have used the fact that
ﬁ-E(r,t):O

Evaluating the Poynting vector for the radiation zone.




Power radiated

2

S(r,t)= iR E(r,)| = 4ch2 R PR
oo [RA[(R-p)p]

j—g:S-RR2:4”C (1—B-R)6

In the non-relativistic limit: /8 <<1

j—g - 4‘]—7:0 Rx[Rx B]r =¥ sin’@

The general expression for the power per unit solid angle.
the result in the non-relativistic limit.

The last expression represents



Radiation from a moving charged patrticle
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qz
47c’

Variables (notation) :
. dR (z.)
R, (t.)= aftr =V

M2 sin” ®

Diagram showing geometry of previous equations.




Radiation power in non-relativistic case -- continued
@ _1q
dQ  4xc’

P 24’ ,|.
P=[do® =29 K|
dQ

3¢°

12 .
M sin’ ®
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Integrating the expression for the power over solid angle gives the total power. On this
slide, the non-relativistic expressions are given..



Radiation distribution in the relativistic case
2

dP . 2

£ _s.RR*=1

o ()]
dQ ~dze (1_B,ﬁ)6

This expression gives us the energy per unit field
time t. We are often interested in the power per
unit retarded time t=t-R/c:

dr,(t,) _dP(t) d ﬁzl—ﬁ-ﬁ
iQ  dQ dr dt
n(s) g [RA|(RB)<B]

dQ  4zc  (1_g.R)
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t.=t-R/c 10

What happens to the complete expression, particularly when the relativistic effects are
numerically significant?  For this, we follow Jackson’s approach and measure the power
with respect to the retarded time. Please make sure that you check the derivation of the
equations on this slide.



Why do you think it useful to measure the power as
energy per unit retarded time P,?
1. Jackson likes to torture us.

2. There should be no difference.
3. ?7?7?
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What do you think?
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Radiation distribution in the relativistic case -- continued

A A . 2
() _ ¢ [RX[(R=P)<B]
dQ  4rc (I_B,ﬁ)s
t.=t—R/c
For linear acceleration:  Bxf=0
PPN
ae(1) ¢ RX(RxB)| g g 50
dQ  4rc (I_B.ﬁ)s 4zc® " (1- PeosbY
t,=t—R/c

First we will consider the case of linear acceleration.

Since the velocity of the particle and

its acceleration are in the same direction, the cross product is 0. The retarded time power
distribution can be shown to have the form given in the last equation of the slide.
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This plot illustrates the sensitivity of the retarded time power distribution to the value of

beta.

Power from linearly accelerating particle

ar(t) _ ¢

qg> .2 sin’@
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Polar plots:

dQ  4ze ({_

180
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Polar plot of the previous results.
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Power from linearly accelerating particle
n A 2
dr(t) ¢ Rx(Rxp) q’ f sin” &
dQ  4rxc (1 _ B,ﬁ)s And (1 —ﬂcos«9)5
t,=t—-R/c
2
A L AP
dQ 3c 1- B
E(r) =
P(1)
) b E f?mcz p : A

Integrating over solid angle, we obtain the total retarded time power radiated, finding it
to vary as gamma®. The logarithmic plot shows the gamma dependence.



Power distribution for linear acceleration -- continued

b
dPV(tr)_ q’ RX(RXB) _q |‘-,|2 sin” 6
dQ  4rxc (1—B'R)5 4zc (1—,Bcost9)5
t.=t—R/c
dP (t,) 2q°.p _ 1
R,(tr)zj 10 QIEC—3|V| ]/6 where }/=Tﬁ2

Summary of results for the linear acceleration case.
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Power distribution for circular acceleration

¢ (- R - (RB)(1-4)
4c (I—B-R)S

db.(t,) 24°,.
P’(t’):IdQ%ZE?MW“
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t.=t-R/c

Now consider the case where the acceleration is perpendicular to the instant

velocity as in the case of circular motion. In this case, the retarded time power depends
on gamma*.  Check whether you agree with this result (or not). Note that in this diagram

the polar angle is not the conventional one.

aneous
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Power distribution for circular acceleration

04/06/2020

t.=t—R/c
g |\'7 ~ cos’ @sin’ ¢
Arc’ (1 -f cos(é’))3 7 (1 -p COS(H))z
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Some more details.

This concludes the discussion of the geometry of the radiation.

In

the next several slides, we will start to discuss another aspect of the radiation, namely its

spectral distribution.
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dp(t):s-liR

Spectral composition of electromagnetic radiation
Previously we determined the power distribution from

a charged particle: ‘Rx R B)X BJ

dQ 47Z'C (1_B'R)

-l

ol

B)<]|

t.=t-R/c

where  (t)=

Time integrated power per solid angle:

0

—00

4rc (l_ﬁ,ﬁf

j jdt|(l(t)| Jda)‘d (o)
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t.=t—R/c

Now we will return to the power measured with respect to the field time (as opposed to
the retarded time). In this way will be able to use the beautiful mathematics of Fourier

transforms to analyze the spectral properties of the radiation.

Here we imagine that the

radiation is measured at a given location for a long period of time so that we will want to

evaluate the time integrated power W.
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Spectral composition of electromagnetic radiation -- continued

Time integrated power per solid angle :

dW jd ap() j dilaac) =Tda)\ci(w)(2

Fourier amphtude :

N 1 % ~ ,
dtd e Alt)=—— |dod(w)e™™
@) 77 | 0= Jwal
Parseval’s theorem
Marc-Antoine Parseval des Chénes 1755-1836

http://www-history.mcs.st-andrews.ac.uk/Biographies/Parseval.html
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Here we make use of the Parseval’s theorem which allows us to relate the time integral of
the power to the frequency integral of its Fourier transform.



0Qow

04/06/2020

Spectral composition of electromagnetic radiation -- continued

Consequences of Parseval's analysis:

dW—jddP

Note that : (€ ()= a "(~o)
fl—g = Ioa’a)‘&(a)j2 = Id(e)(‘fi(a)j2 + ‘CZ(— a))rj = Tda) 200

L _ (o)

Jd alt) =_Tda)‘d(a))r

0’1
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Mathematically, the theorem involves integrals over all frequencies, while physically
negative frequencies are not measured. By using the fact that the power amplitude must

be real (mathematically),

frequency and solid angle.

we can then derive a formula for the intensity | as a function of
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What is the significance of

1.
2.

04/06/2020

2
?

ow

It is purely a mathematical construct
It can be measured
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Spectral composition of electromagnetic radiation -- continued

Rx[(R-p)+6]

4rc (I_B,ﬁf

q2

For our case: a(t)=

t.=t—R/c

Fourier amplitude:

~

d(a))zﬁ]g dt & a()

o f{x[(f{—[})x[}]
q J‘ dt iot
2 3
8r°c e (1 _ B . R)
t.=t—R/c
04/06/2020 PHY 712 Spring 2020 -- Lecture 27 23

Here we analyze the power amplitude in order to take its Fourier transform.  Apparently,
if we can evaluate this integral, we can determine the intensity spectrum.



Spectral composition of electromagnetic radiation -- continued

Fourier amplitude :

0

— J. ta)t

: \Rxwﬁu
\/7'[61 [jR)3 e

t,=t—R/c

g A ‘RX (R B XB]
L =
/ ‘RX R-p XB” jol, +R(, )/e)

J.d Y R)Z e

t,=t=R/c

eia)(tr +R(t,)/¢c)
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The integral must be performed over the field time, but the argument of the integral is
expressed in terms of the retarded time. Fortunately, we can use the relationship
between the two in order to perform the actual integral in terms of the retarded time.



Spectral composition of electromagnetic radiation -- continued

Exact expression :

d(a)): q2 ]gdtr ‘lix [(li—l?)x B” eia)(t,JrR(tr)/c)
VSﬂ'ZC_OO (I—B-R)Z

t,=t—R/c

Recall: R . (z.)

For r>>R (t,) R(t

At the same level of approximation: R ~r
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Here we make use of some approximations valid far from the source.
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Spectral composition of electromagnetic radiation -- continued

Exact expression:

_ / (]22 Tdtr RX[(IA{_?):B:”‘ eiw(t,ﬁR(tr)/c)
8r°c (I—B-R)

t.=t—R/c

Approximate expression:

T X |:f' B)XBJH e,-w(tr,f.Rq(tr)/c)

a __tr/c
O L

Resulting spectral intensity expression:

2
0’1 T ‘ [ (F- B)XB]‘ iooft, ~-R, (1, )/c)
e
2
0woQY 47z cls, B-T)
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Summarizing the approximations.
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Example — radiation from a collinear acceleration burst
0*1 7> |7 [ r- B)XB] ioft, iR, (1,)/c)
= 2 J e 4
0woQ) 4rxc A ] l} r)
t.=t—R/c
o [Bay
Suppose that =< 7 O0<t, <z
0  otherwise
2
2 > |[Ex|[ExBlavi s P
a I — qz ; |: j|2 Idtrela)(tr—r-ﬁt,) Let ﬁ'f' — ﬂCOSH
o0wod 4r‘c (1_|3.f-) T
2
o'l ¢ Avsin®  sin(or(1- Bcos8)/2)
0woQ)  4r’c’ (1-Bcos 9)2 (wr(1-PBcosB)/2)
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Here we consider an example of motion due to an abrupt collision. This example is
actually discussed at the beginning of Chapter 15 of Jackson.

27



Example:

A

BAv

Suppose that =4 ¢7 0<t <7

0  otherwise

2
P { Avsin@ sin(a)r(lﬂcosﬁ)/2)]

0woQ  Ar’c (1-Bcos 9)2 (wr(1—Bcosd)/2)
r
0
Av
Example: “Bremsstrahlung” radiation
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This radiation is for example caused by a fast moving charged particle coming to an abrupt
stop such as when it smashes into matter. The value of tau depends on the matter and
the particle.
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Spectral composition of electromagnetic radiation -- continued

Alternative expression --

It can be shown that:

S a0

Integration by parts and assumptions about the integration

limit behaviors shows that the spectral intensity depends on

the following integral:
2

0*1 ER,(1)/e
Ga)GQ_47rc I‘” [Fx(BxB(s,)) Je ™0

Next time we will evaluate this expression for synchrotron radiation.
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