PHY 712 Electrodynamics
12-12:50 AM MWF Olin 103

Plan for Lecture 3:
Reading: Chapter 1 in JDJ

1. Review of electrostatics with one-
dimensional examples

2. Poisson and Laplace Equations

3. Green’s Theorem and their use in
electrostatics
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PHY 712 Electrodynamics
IMWF 12-12:50 PM [[OPL 103 du/~natalie/s20phy712/ |
[Instructor: Natalie Holzwarth [Phone:758-5510 Office:300 OPL e-mail:natalie@wfu.edu|
Course schedule for Spring 2020
(Preliminary schedule -- subject to frequent adjustment.)
Lecture date JDJ Reading \ Topic HW Due date
1 Mon: 01/13/2020 |Chap. 1 & Appen. \Introducﬂon. units and Poisson equation #1 01/17/2020
2 |Wed: 01/15/2020 |Chap. 1 ]ﬁeclroslatic energy calculations #2  |01/22/2020
3 |Fri: 01/17/2020  [Chap. 1 Electrostalic potentials and fields #3  |01/24/2020
Mon: 01/20/2020 |No class Martin Luther King Holiday
4 |Wed: 01/22/2020 (Chap. 1-3 Poisson's equation in 2 and 3 di
5 |Fri: 01/24/2020 |Chap.1-3 Brief introduction to numerical methods
6 |Mon: 01/27/2020 |Chap.2 & 3 Image charge constructions
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Poisson and Laplace Equations
We are concerned with finding solutions to the Poisson
equation: (r)
V2, (r)= -2
&o
and the Laplace equation:

VO, (r)=0

The Laplace equation is the “homogeneous” version of the
Poisson equation. The Green's theorem allows us to
determine the electrostatic potential from volume and surface
integrals: 1
O(r) =

o Ld%' PG )+
0

%j dzr'[G(r,r')V'(D(r') —CI)(r')V'G(r,r')]~f".
v N
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Poisson equation -- continued

Note that we have previously shown
that the differential and integral forms

of Coulomb's law is given by:

vor)=—LY and or=— [ arL (r)
& 4re, 7V ‘r—r"

Generalization of analysis for non-trivial boundary conditions:

1
O(r)=—-o7| d’r'p(r"\G(r,r") +
(r) WOJV r p(e)G(r,r)

%j dr'[G(r,r)V'O(r) - d(r)V'G(r,r')]-F'.
v/ N
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General comments on Green’s theorem

D(r) = éjl &r p(r)G(r,r) +
i.[sdzr' [G(r,r')V'd)(r') - @(r')V'G(r,r')} Y

This general form can be used in 1, 2, or 3 dimensions. In
general, the Green's function must be constructed to satisfy
the appropriate (Dirichlet or Neumann) boundary conditions.
Alternatively or in addition, boundary conditions can be
adjusted using the fact that for any solution to the Poisson
equation, q)P (r) other solutions may be generated by use
of solutions of the Laplace equation

O(r)=D,(r)+ CD,(r),for any constant C.
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“Derivation” of Green’s Theorem
_p®)

80
Green's relation: V"’G(r,r) = 475" (r —r').

Poisson equation: V’®(r) =

Divergence theorm: J.dlr V-A= q;dzr At
v s

Let A= f(r)Vg(r)—-g(r)Vf(r)
Id3r v -(f(r)Vg(r)—g(r)Vf(r)) :(j‘)dzr (f(r)Vg(r)—g(r)Vj'(r))~i'

jd3r (f(r)Vzg(r)—g(r)sz(r))

Vv
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“Derivation” of Green’s Theorem
_p®)

80
Green's relation: V"’G(r,r) = 475" (r —r').

Poisson equation: V’®(r) =

de%’ (f(r)Vzg(r)—g(r)sz(r)) :Sedzr (f(r)Vg(r)—g(r)Vf(r))~f

f(r)o o) g(r)=G(r,r")
D(r) :i%fder'p(r')G(r,r')+

ZLJd%{G@;)V@@)—@@jVG@;ﬂfﬁ
v N

1/17/2020 PHY 712 Spring 2020 — Lecture 3 7

1/14/2020

Example of charge density and potential varying in one dimension

Consider the following one dimensional charge distribution:

0 forr < —a
—po for—a<z<0
+pp for0<z<a
0 forz >a

‘We want to find the electrostatic potential such that

Po(x) _ pla)

. = )
dz? =

with the boundary condition ®(—o0) =0 and i[ﬁ(—w) =0
X
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Electrostatic field solution

The solution to the Poisson equation is given by:

0 forz < —a
o(z) = '}PE%,(T/‘*'(%)2 for—a <z <0 ‘

— & (z—a)?+ 0a? for0<z<a

29 &0

':—gaz forz >a

The electrostatic field is given by:

0 forz < —a
o
—R(x+a) for—a<z<0
E(z) = & ) 8
D(x—a) for0<z<a
<o
0 forz >a
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Electric charge density

Electric potential
Electric field
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Comment about the example and solution

This particular example is one that is used to model
semiconductor junctions where the charge density is
controlled by introducing charged impurities near
the junction.

The solution of the Poisson equation for this case can
be determined by piecewise solution within each of the

four regions. Alternatively, from Green's theorem in
one-dimension, one can use the Green's function

D(x)= Lr G(x,x")p(x")dx' where G(x,x")=4rx_
4rg,
x_ should be take as the smaller of x and x'.
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Notes on the one-dimensional Green’s function

The Green's function for the one-dimensional
Poisson equation can be defined as a solution to
the equation: V?G(x,x") = —475(x—x")
Here the factor of 47 is not really necessary, but

ensures consistency with your text's treatment of

the 3-dimensional case. The meaning of this expression

is that x' is held fixed while taking the derivative with

respect to x.
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Construction of a Green’s function in one dimension

Consider two independent solutions to the homogeneous equation
Vi, (x)=0
where i =1or2. Let
. 4r
G(x,x)= Wﬂ’;(&)‘l’z(&)-

This notation means that x_ should be taken as the

smaller of x and x' and x_ should be taken as the larger.
W is defined as the "Wronskian":
d¢(x) d¢,(x)
W=—"=6(x)-h(x)—"—
dx dx
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Summary

V’G(x,x") = —4m5(x—x")
Gl = ST B ()

_d4(x) 490
W=—"—#®-dx—

dG(x,x") _dG(x,x")
dx

x=x"+€ dx x=x'-€
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One dimensional Green’s function in practice

O(x) = ﬁﬁ G(x,x") p(x")dx'

:ieo{'l‘; G(x,x")p(x")dx'+ J‘j G(x,x") p(x")dx v}

For the one-dimensional Poisson equation, we can construct
the Green's function by choosing ¢(x) =x and ¢,(x)=LW =1:

(x) = gi{ [* xperdr+ x| plx ')dx'}.

G(x,x")=4mx_

This expression gives the same result as previously
obtained for the example p(x) and more generally is
appropriate for any neutral charge distribution.
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Orth 1 function expansions and Green’s functions

Suppose we have a “complete” set of orthogonal functions {u, ()} defined in the
interval x; < x < x5 such that

.
/ Un ()t (2) A = G-
1

‘We can show that the completeness of this functions implies that

M3

Un (2)un(2') = 6(z — 2').

n=1

This relation allows us to use these functions to represent a Green’s function for our
system. For the 1-dimensional Poisson equation, the Green’s function satisfies

1/14/2020

& / /
WG(TT ) = —4né(z — 2).
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Orth 1 function expansi _—
Therefore, if

&2
@uu(x) = —apun (),

where {u, ()} also satisfy the appropriate boundary conditions, then we can write |
Green’s functions as

Ga,a)=4r Y Un(@)un(2)
n

)
a
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Example

For example, consider the example discussed earlier in the interval —a < z < a with

0 forz < —a
—po for—a<z<0
plz) = (24)
+py for0<z<a
0 forz >a
‘We want to solve the Poisson equation with boundary condition d®(—a)/dz = 0 and
d®(a)/dx = 0. For this purpose, we may choose

un(z) = \/gsin (W) . (25)

The Green’s function for this case as:

.
a2, 8
G(z,2') = — (26)
a
n=0
111772020 PHY 712 Spring 2020 - Lecture 3 18

18




Example - continued

— (2n+1]m)? +

q Constant shift to
. [ [2nt1]mz ) allow ®(0)=0.
2 > sin 1
P(z) = 200" (16 ( = 5) .

064
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