PHY 712 Electrodynamics
12-12:50 AM MWF Olin 103
Plan for Lecture 4:

Reading: Chapter 1 - 3 in JDJ
Electrostatic potentials

1. One, two, and three dimensions
(Cartesian coordinates)

2. Mean value theorem for the
electrostatic potential
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Colloquium: “Prediction and Inverse
Design of Sustainable Energy Materials”

Dr. Ongun Ozcelik

Theoretical and Computational Chemistry
University of California, San Diego

George P. Williams, Jr. Lecture Hall, (Olin 101)
Wednesday, January 22, 2020 at 3:00 PM

There will be a reception in the Olin Lounge at approximately 4 PM following the]
colloquium. All interested persons are cordially invited to attend
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PHY 712 Spring 2

PHY 712 Electrodynamics

MWF 12-12:50 PM |[OPL 103/ wfu.edu/~natalie/s20phy712/|
[Instructor: Natalie Holzwarth [Phone:758-5510Office:300 OPL fe-mail i edu|

Course schedule for Spring 2020

(Preliminary schedule - subject to frequent adjustment.)

Lecture date JDJ Reading Topic \ HW Due date

1 |Mon: 01/13/2020 |Chap. 1 & Appen. ion, units and Poisson equation \ﬂ 101/17/2020
|2 |Wed: 01/15/2020 |Chap. 1 Electrostatic energy calculations \ﬁ 01/22/2020
3 |Fri: 01/17/2020  |Chap. 1 Electrostatic potentials and fields \ﬁ 101/24/2020

Mon: 01/20/2020 |No class Martin Luther King Holiday [
4 \Wed: 01/22/2020 Chap. 1-3 Poisson’s equalion in 2 and 3 dimensions 4 (01/27/2020
5 |Fri: 01/24/2020 |Chap.1-3 Brief introduction to numerical methods
6 IMon: 01/27/2020 |Chap.2 &3 Image charge constructions
7 |Wed: 01/29/2020 |Chap.2 & 3 Cylindrical and spherical geometries
8 |Fri: 01/31/2020 |Chap.3&4 Spherical geometry and multipole moments
9 |Mon: 02/03/2020 |Chap. 4 Dipoles and Dielectrics
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Poisson Equation

W@An=~ﬂﬂ

€y

Solution to Poisson equation using Green's function G(r,r"):

O(r) = i[y &’r' p(r\G(r,r'") +

%j & [G(r, e )V (") - D(r')V' G(r,r)]-F.
T N
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Poisson equation for one-dimensional system
d0,(x) __px)
. : 50
Example solution:
1 (=
D,(x)= —J G(x,x")p(x")dx'+ C + C,x
Are, T

where G(x,x'") =47zx_ where x_ is the smaller of x and x';

C, and C, are constants.

Check:
D,(x)= L{Jﬂ x'p(x")dx'+ xrp(x')dx'} +C +Cx
£ U= X
O L g, W po)
dx &% : ax’ &
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General procedure for constructing Green'’s function for one-
dimensional system using 2 independent solutions of the
homogeneous equations

Consider two independent solutions to the homogeneous equation
Vi (x)=0
where i =1or2. Let
N 4r
Gx,x) =~ A (x)A(x,).
w
This notation means that x_ should be taken as the

smaller of x and x' and x_ should be taken as the larger.

"Wronskian": W = %@ xX)-¢ (x)%,

Beautiful method; but only works in one dimension.
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Orth 1 function expansions and Green’s functions

Suppose we have a “complete” set of orthogonal functions {u, ()} defined in the
interval x; < x < x5 such that

2
/ Uy ()t () A =i
£

‘We can show that the completeness of this functions implies that
oo
3 tn(@)un(a’) = 3(a — ).
n=1

This relation allows us to use these functions to represent a Green’s function for our
system. For the 1-dimensional Poisson equation, the Green’s function satisfies
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Orthogonal function expansion -- continued

Suppose the orthogonal functions satisfy an eigenvalue equation:

2

—u,(x)=—a,u, (x
o ,(X) 14, (X)
where the functions u,(x) also satisfy the appropriate boundary

conditions, then we can construct the Green's function:

G, ) = 47y e ()

an
Check:
2 _ v
d _G(x,x") = 4HZM =47 u, (X, (x')
dx” - a, "
=—475(x—x)
1/22/2020 PHY 712 Spring 2020 - Lecture 4 8

Example
For example, consider the previous example in the interval
—a<x<a:
0 for x<—-a
() = -p, for —a<x<0
+P

, for 0<x<a

0 for x>a

We want to solve the Poisson equation with boundary condition
d®(—a)/dx=0and d®d(a)/dx=0. We may choose

u,(x)= \/Isin([zr‘;&j and the corresponding Green's function
a a

. ([2n+1zx) . ([2n+1]zx'
e 20 " e
Glr,x)=-Z y

)= zo ([2“1];:]2
2a
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Example -- continued
This form of the one-dimensional Green's function only allows us to find a

solution to the Poisson equation within the interval —a < x<a from

(x)= Lj dx' G x)p(x) + C,
4ng, 7

([Zn + l]ﬂxj

1
=®O(x) = 16"207([2“1]”) b

choosing C, so that ®(—a) =0.
0 for x<—-a
P (xta) for —a<x<0
2¢,
Exact result: @(x)= 7&()(7[1)2 " p(,az for 0<x<a
2¢, o
Loy for x>a
&
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Example -- continued
[[Zn + l]/rx)
1
D(x) =216 7+7
)= z(; (2n+1ry 2
—
., i 0l : 4
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Orthogonal function expansions in 2 and 3 dimensions

VO(r) =

“Zm(r) F0(r) , I'O(r) _ o0,
OX

oy’ oz*

Let {u” (x)}, {v” (y)}, {w” (z)} denote complete orthogonal
function sets in the x, y, and z dimensions, respectively. The

Green's function construction becomes:

G2, = Y W 0 0w, 2o, 2)

tmn o+ B, +7,
where
) = e (). 7=, ), and @)= 2)
(See Eq. 3.167 in Jackson for example.)
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Details of a two-dimensional example -

Example:

b

\ )

Ta
Two dimensional box with sides a and b with boundary
conditions:  @(0,y)=d(a,y)=d(x,0)=d(x,b)=0

o’D(r)  O°D(r
V2O(r) = 75) +Tg) =—p(r)/¢,.
u, (u, (X)W, (), (V)
G(x,x',y,y) =4 AL ' WVulV)
(5,x,2,7") ”,Zm‘ )
42 4
where P u)(x) = —au,(x), W"m(x) ==f,v.(»)
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Two dimensional example continued --

a

2 . (lzx 2 . (mxy) . Y mr
w(x)=,|=sin| — v, (y)=,|—sin with @, =|—=| f =|—>
a \a b\ b a b

' (), (XY, (P)v,, ()
Glx,x'y,y) =dr ) —omr e
; o +p,

(lzx . (lzx"\ . (mry) . (mzy'
sin| —— |sin| —— [sin| — |sin| ——
16 z a a b b
ab Y (mY
i I
a b
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dimensional box
with sides a and
b with boundary
conditions:
P(0,y)=D(a,y)=
L \ J D(x,0)=d(x,b)=0

a

D) =——[ & p(r)Glrr) +
g Know this term=0
Don’t know this ter now this term=
2 W' ' i\val NN
Ejsd PG W' D)~ D(r)V'G(r,r)]- £,

=By design G(r,r’) vanishes on boundary.
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Example #1:  p(x,y) = p, sin(ijsin(%]
a
Example #2:  p(x,y) = p,

1 SO ,
O(r) = pry Ld ' p(rYG(r,r)

For this case:

. (lzx . (lzx"\ . (mzxy) . (mzy'
16 s P s T sin b sin T
G(x,x\, y,y)=—r-r 2
X 2 (1] (m)-
R I
a b

272
For example #1: ®(x,y)= f)"ai,bzsin(ﬂjsin [Q]
e (a”+b7) a
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Combined orthogonal function expansion and

homogeneous solution construction of Green’s function

in 2 and 3 dimensions.

An alternative method of finding Green's functions for a second order

ordinary differential equations (in 1 dimension) is based on a product of

two independent solutions of the homogeneous equation, ¢ (x) and ¢,(x):

Gx ) = K () (x), where K="
B, dh
de "t dx
where x_ denotes the smaller of x and x'.

For the two and three dimensional cases, we can use this
technique in one of the dimensions in order to reduce the

number of summation terms. These ideas are discussed in
Section 3.11 of Jackson.
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Green’s function construction -- continued
For the two dimensional case, for example, we can assume that the

Green's function can be written in the form:

2

d
G(x,x',p,y) = > u,(¥)u,(x")g,(y,y") where St () = —au, (%)

nn

The y dependence of this equation will have the required

2

behavior, if we choose: |:—a“ + %} g,‘(y,y') =—4r5(y-y),
oy

which in turn can be expressed in terms of the two independent

solutions v, (¥) and v, (y) of the homogeneous equation:

42
{W - 0’,}"”, (»)=0,

) dv, dv,
and the Wronskian constant: K, =—="v, —v, e -
o Ly
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~2
[*an + Oﬁ} 8,(3,y)=—418(y-y),
oy

Y4
g,(ny)= X Y, ()

dZ
where: |:—,7a”:|vn »=0,
dy” !
dv, dv,
and K, =—"v, —v, —2
dy " ' dy
For example, choose v, (y) = sinh(y/e,y) and v,, (¥) = sinh(, Ja, (b—»))
where K, = /e, sinh(/a,b)

using the identity: cosh(r)sinh(s) + sinh(r)cosh(s) = sinh(r + 5)
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Example:

b

\ )

Ta
Two dimensional box with sides a and b with boundary
conditions: @(0,y)=®d(a,y)=d(x,0)=d(x,b)=0
1
D(r)= —Iydsr'p(r')G(r,r') +
Dori’t l?ﬁg&w this ter! Know this term
—j dr'[G(r,r)V' &) - D(r)V'G(r,r"]-#'.
47 s

4
Glxx',y,y) = Y u, (), (x')fvn, (v, ().

n
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Example:

b

L )
Ta

Two dimensional box with sides a and b with boundary

conditions: @(0,y)=®d(a,y)=d(x,0)=d(x,b)=0

For this type of problem, it is necessary to construct G(x,x', y,»")
so that it vanishes on the boundary:
G(x,x.y,0)=G(x,x',y,b) =G(x,0,y,y") =G(x,a,y,y") =0
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Gl .v') = it (0, () 20, ()9, 02

n
2

%u" (x)=-oa,u,(x) where u,(0)=u,(a)=0

2 . (n/rxj [nﬂ'jz
=u,(x)=,|—sin| — a,=|—
a a a
d? nr )
|:7dyz *(7) }V (»=0

v, (= sinh(ﬂy] v, (»)= sinh(—”(b - y))
a

n

a

K, = Esinh(@]
a a
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Green'’s function construction -- continued

G(x,x',y,y) =D u, (), (XK, (v v, (7).

For example, a Green's function for a two-dimensional rectangular system
with 0 < x <a and 0 < y <b, which vanishes on the rectangular boundaries:

. sin(@jsin{nﬁx )sinh("”y< jsinh(ﬂ(b—y)]
a a a a

Glex' ) =83 —
=l nsinh(—j

a

Y
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Ta

—|.d*'G T)—O(r)V'G(r,r)]-F.

Y sin(@] sin(ﬂj sinh (@jsinh(ﬂ(b - y>)}
G(x,x',y,y)=8)" = = 2 “ -

et nsinh(@]

a
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. sin(@)sin(—nﬂx ]sinh(Lry< jsinh [M(b - y>)]
' , a a a a
G(x,x',y,y) =8 .

=t nsinh @]

Example:  p(x,y)=p, sin(ﬂjsin(ﬂj
a

1 3
O(r)=——[ d’r' p(r)G(r,r)
4re, "
In this example, only n=1 contributes because
jndx'sin[ﬂ]sin(—mm ): 55,”
0 a a 2

8 a . nx
O(x,y)=—L——— sin| == |x
() 47¢, 2sinh(7ra / b) ( a ]

[sinh[Mdey'sin[ﬂvasinh(”—yI] + sinh(ﬂ]fdy'sin(”—yljsinh[M]]
a ° b a a ), b a

22
When the dust clears: D(x,y) = &Za,ibzsin [ﬁ)sin [QJ
€ m(a +b7) a b
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A useful theorem for electrostatics
The mean value theorem (Problem 1.10 in Jackson)

The “mean value theorem” value theorem (problem 1.10 of your textbook) states that the
value of ®(r) at the arbitrary (charge-free) point r is equal to the average of ®(r’) over
the surface of any sphere centered on the point r (see Jackson problem #1.10). One way
to prove this theorem is the following. Consider a point r’ = r + u, where u will
describe a sphere of radius R about the fixed point r. We can make a Taylor series
expansion of the electrostatic potential ®(r’) about the fixed point r:

B(r + u) = B(r) +u-VI(r) + %(U-V)Qd)(r)+%(u-v)sz(r)+%(u-v)4<1>(r)+v -
' ) ' 0

According to the premise of the theorem, we want to integrate both sides of the equation
1 over a sphere of radius R in the variable u:

2m +1
/ dS, = R? / dé, / dcos(8,,). 2)
sphere Jo J-1
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Mean value theorem - continued

‘We note that
5%
32/ dqsu/ deos(B,)1 = 4nR?,
o -
e pm
RZ/ ddzu/ deos(Bu)u-V =0,
o L
Sidn - G,
R‘/ dwu/ deos(u)(u- V) = L2,
o s

27 +1 ‘
R’/ déu/ dcos(8u)(u- V) =0,
b s

5

e pn AnRS
R‘/ dm/ deos(Bu)(u- V)t = T g1,
o i
Since V2&(r) = 0, the only non-zero term of the average is thus the first term:

2%
RZ/ dm/ deos(0,)B(x + u) = drR2®(r),
o -
o
o)=L B [T g [ doos(8)@ +u) = dS.B(r +
= /0 on/_‘ cos(0)B(x u):mlphm (x4 u).

Since this result is independent of the radius R, we see that we have the theorem.
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Summary: Mean value theorem

1

d(r)=
) 47 R?

[RaQ, o(r+u)

~¢
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