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1 —Introduction

Except for the lightest atoms, most calculations of approximate wave 
functions and fields for many-electron atoms have been carried out by the 
method of the “ self-consistent field,” of which the principle is, shortly, 
the determination of a set of one-electron wave functions such that each 
represents a stationary state of an electron in the field of the nucleus and 
the Schrodinger charge distribution of the electrons occupying the other 
wave functions of the set.f This method has been found quite practicable 
for numerical work, even for the heaviest atoms.

As so far applied, it involves three main approximations, namely, (a) 
neglect of relativity and spin effects, ( ) neglect of exchange effects, 
and (c) treatment of the wave function of the whole atom as built up of 
functions of the co-ordinates of the individual electrons only, its depen
dence on the mutual distances between every pair of electrons being 
neglected; or, in other words, each electron is replaced by a statistical 
average distribution, in calculating its effect on the other electrons on 
the atom.

Spin and relativity effects are not likely to be considerable except for 
the heavier atoms. There seems no difficulty in principle or in practice 
in taking them into account, to a certain approximation, in the “ self- 
consistent field ” method, although they would make somewhat heavier 
the numerical work, which is already rather laborious for heavy atom s; 
but no quantitative work on these lines has yet been done.

The third approximation appears difficult to dispense with at present, 
except for the very lightest atoms. It is implied in the usual practice 
of describing atomic configurations in terms of one-electron wave 
functions, each of which is regarded as occupied by an electron; and 
though departure from this practice must certainly be made in order to 
obtain an accurate description of the structure of an atom, the resulting 
description is likely to be more elaborate, less easily visualized, and more 
difficult to work out and apply quantitatively. So it seems desirable to 
proceed as far as possible along the lines of improving the approximation

t  D. R. Hartree, ‘ Proc. Camb. Phil. Soc.,’ vol. 24, pp. 89, 111 (1928).
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without such a departure from the usual practice of describing atomic 
configurations, and the main possible improvement (except perhaps for 
the heavier atoms) is the inclusion of exchange effects. When the work 
described in this paper was begun, it was thought probable that the neglect 
of exchange effects was the most important of the three approximations 
made in the self-consistent field method; the results of the present paper 
show that this is not so, at least according to one way of estimating the 
relative importance of different approximations, but even so, the inclusion 
of exchange effects is worth carrying out if possible.

The principles and general theory of a method for including exchange 
effects have already been given some years ago by Fockf; they were 
suggested independently about the same time by Slater.J But the practical 
handling of Fock’s equations is a problem of numerical technique 
altogether more complex than the solution of the self-consistent field 
problem without exchange, and, as far as we are aware, the only complete 
solution yet obtained for any case in which the main features of the 
problem are fully shown§ is that of sodium, for which the results, and 
methods used to obtain them, have quite recently been given by Fock and 
Petrashen.|| The solution of Fock’s equations given in the present 
paper had been completed, and the subsidiary calculations of energy 
values were in progress, when this paper appeared. The methods we 
have used differ considerably from those of Fock and Petrashen and 
appear simpler for practical work; for example, we make no use of 
analytical approximations which are usually not so convenient to handle 
numerically as they might appear, or of the Green’s function constructed 
by them.

f  ‘ Z. Physik,’ vol. 61, p. 126, and vol. 62, p. 795 (1930).
% ‘ Phys. Rev.,’ vol. 35, p. 210 (1929). This note will be referred to as Slater I.
§ L. P. Smith (‘ Phys. Rev.,’ vol. 42, p. 176 (1932)) has obtained solutions of Fock’s 

equations for the highly excited S states of neutral He. But this is altogether an 
exceptionally simple case, as the (Is) wave function can be taken to be hydrogen-like, 
unperturbed by the electron in the excited wave iunctions, and the problem reduces 
effectively to a one-electron problem; also various analytical approximations, not 
available in the general case, can be made here.

|| ‘ Phys. Z. Sowjet.,’ vol. 6, p. 368 (1934). The solution for the ion Na+ is fully 
worked out, but the solutions for the states of the neutral atom are strictly speaking, 
not complete, as the perturbation of the core by the series electron is neglected. In 
the self-consistent field without exchange, this perturbation is not large, but it is 
appreciable for the lowest states of the series electron; the results of the present work 
show that, at least in the case here considered, the perturbation of the core by the 
series electrons, although not zero, is considerably smaller when exchange effects 
are included than when they are neglected, and this result may be regarded as a partial 
justification of the neglect of this perturbation by Fock and Petrashen.
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2—F ock’s Equations

Fock’s equations are obtained by applying the variation principle to 
determine the best approximation, of a particular type, to the wave 
function for a whole atom. The type of wave function contemplated is

XF 4* (a li) 4 M2) 4 (a |3) • •
4 Oil )  4(P|2) 4 (M3)--  
4 (t 11) 4 ( r |2 )  4 (y|3) •• ( i )

where the Greek letters a, p, . . .  are labels of the one-electron wave 
functions 4? an<3 the numbers 1, 2, 3, .. stand for the co-ordinates of 
the various electrons. Further, the one-electron wave functions 4 are 
taken to be of the central-field type

4' H j )  =  t  p s e ,«  x (2)

where na, la, mtt, sa are the three spatial and one-spin quantum numbers 
specifying the wave function a, and rjy 0,., </>,., are the three spatial and 
one-spin co-ordinate of electron j ; S is a spherical harmonic of degree 
f , and x is the spin wave function.

The criterion of the “ best ” approximate wave function given by 
(1) and (2) is that the approximate value E of the energy, given by

E =  | >F* H W i  j  | V* Wd-z (3)

should be a minimum for arbitrary small variations of the radial wave 
functions P.

The most simple and direct method of deriving Fock’s equations, for 
any given atomic state, seems to be to use the results of Slaterf for the 
evaluation of E given by (3), when T  is taken as a determinant (1) of 
central field one-electron wave functions (2), and then to apply the 
variation principle to obtain the differential equations for the radial wave 
functions P. This method follows closely the original suggestion of 
Slater,f and has been used by Brown§ to obtain Fock’s equations for 
neon-like atoms and neutral fluorine.

t  ‘ Phys. Rev.,’ vol. 34, p. 1293 (1929). This paper will be referred to as 
Slater II.

X See Slater I.
§ ‘ Phys. Rev.,’ vol. 44, p. 214 (1933).
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It is not necessary to carry out the work from the beginning for the 
normal state of neutral Be with which this paper is concerned, since 
Fock’s equations for this state can be obtained from those given by Fock 
for sodium, or from those given by Brown for the cases considered by 
him, by retaining only the terms involving the (Is) and (2s) wave functions.

For the analytical work of evaluating E, and of applying the variation 
principle, and for theoretical discussions, it is most convenient to regard 
the one-electron wave functions ^ as orthogonal and normalized; this 
places no restriction on the wave function Y of the whole atom, but is a 
condition imposed in the interests of analytical convenience and simplicity. 
In the numerical work, however, it is inconvenient to be restricted to 
working explicitly with normalized wave functions. To avoid mis
understanding, we shall distinguish between unnormalized and normalized 
functions, denoting the latter by a suffix N, so that

PN(ak) = p(ak) P2 (a|r) (4)

It is convenient to use the functions

z* (ap|r) = f pn Oki) pn (Pki) kik)fc dri (5)J?T = 0

y k (ap|r) = I pn Oki) pn (Pki) (ki Iff
+  ( p n  ( a k  i )  p n ( P k i )  k k i )/c+1 ( 6 )

J r1 = r

already introduced in another context,! and the integrals!

' ^ , 2 N _  (/q +  1)'
dr2 r r2

PN (a|r) drI(a) =  “ i f" P N(«k)Jo

F* (ap|r) =  f"PN2 («|r) Y k ($$\r)r~l dr =  f p N2 (p|r) Yt («a| />-> dr 
Jo Jo

G»(«p|r) =  f"pN («|r) Px (P|r) Y t («p|r) i-> dr.
Jo

(7)

(8) 

(9)

f  Hartree and Black, ‘ Proc. Roy. Soc.,’ A, vol. 139, p. 311 (1933). The function 
Yfc(ap/r) is that written Zvkby Brown and is (1/r) times the function
written Ffc“̂  (r) by Fock and Petrashen (loc. cit.) and by Brown. The functions Y k 
seem more convenient for practical work than the functions Ffc, and the notation of 
the present paper is used to avoid a multiplicity of suffixes and indices.

J See Slater II, and Hartree and Black, loc. cit.



For the normal state [(Is)2 (2s)2 1S0] of neutral Be, the conditions of 
orthogonality reduce to

f°°P (ls|r) P (2s|r) =  0, (10)
J 0

the expression for E, which we shall require later, is

E =  21 (Is) +  21 (2s) +  F 0 (Is, Is) +  4F0 (Is, 2s)
+  F 0 (2s, 2s) — 2G0 (Is, 2s), (11)
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and Fock’s equations for the orthogonal, but unnormalized, radial wave 
functions become

d2 , 2N — 2Y0 (Is, ls|r) — 4Y0 (2s,
d? +  7 “  £n

+

+  —  
^  K2

2N — 4Y0 ( I s, ls|r) — 2Y0 (2s, 2s |r)

where
K -

P (ls |r)

2KY„ (Is, 2s|r) _  ^  | p =  0 (12)

i] P (2^k)

+  2KY° ^ 1 ^  -  Ksu ]  P ( lj|r)  =  0, (13)

(*P2 (2s|r) dr j  f*P2 (lj |r )  dr ' (14)

and eu , s12, s22 are Lagrange multipliers introduced in the course of the 
application of the variation principle. The equations have been written 
here in the form found suitable for numerical work.

The equations of the self-consistent field are given by omitting the 
second term in each of these equations, and are

-_df , 2N -  2Y0 (Is, ls[r) -  4Y0 (2s, 2s|r) 
_dr2 r
~d2 ^  2N -  4Y0 (Is, ls|r) -  2Y0(2s, 2s|r) 
dr2 ^  r

P(ls|r) =  0 

P(2s|r) =  0

(15)

(16)

(the values of the Lagrange multipliers eu , e22 f°r equations (15), (16) 
will generally be different from these for equations (12), (13)).

3—A rbitrariness of the Solutions of F ock’s Equation

Since the determinant (1) is unchanged by the replacement of the ^’s 
by any set of independent linear combinations of them, it follows that
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the form of equations (12), (13) is unaffected by orthogonal transformation 
of the functions P. Thus if P (Is),P (2s) are the normalized solutions of 
(12), (13), the functions Y0 in these equations being related to these P’s 
by (4), (6), then, for any constant value of y, the orthogonal pair of 
functions

P '(b ) =  P(ls) +  (y/K)P(2*)
P' (25) =  P (25) - y K P  (15) /  (1?)

are solutions of equations of the form (12), (13), in which the functions 
Y0 are replaced by functions Y '0 related to the wave functions P' in the 
same way as the functions Y0 are related to the wave functions P, and 
in which the values s of the Lagrange multipliers are replaced by other 
values s'. Thus the functions P' are also solutions of the self-consistent 
field problem including exchange, so that this problem has not a unique 
solution but a set of linearly related solutions given by (17) with different 
values of y.

This invariance of the form of equations (12), (13) under the trans
formation (17) can also be shown by direct substitution in the equations, 
and this also gives the transformation formulae for the e’s, namely,

£'n =  (£n +  2ys12 +  y2£22)/(l +  y2))
£ '2 2  =  (s22 — 2ys12 4- Y2£n)/(1 +  y2)J 

s'i2 =  [(1 — y2) £12 +  y (£22 -  en)]/(l +  y2). (19)

The last of these is important, as it shows that there is one, and essentially 
only one,t value of y for which s'12 =  0, namely, that for which

(£11 — £12) y =  (1 — y2) H2, (20)

so that the condition s'12 =  0 selects a single pair of functions P' out 
of the set of pairs (17) with different values of y.

The pair of functions so selected will be regarded as the standard 
solution of Fock’s equations and will be distinguished by a suffix f, 
thus Pr (a/r). KoopmansJ has shown generally that such functions are 
the most convenient ones to use in describing an atomic configuration, 
and the equations from which Fock and Petrashen start their numerical 
work contain no s12.

In the method we have used for the solution of the equations, it is most 
convenient to include e12 as one of the parameters adjustable to satisfy

t Equation (20) has two roots, but they only differ in interchanging the two functions 
P'.

J ‘ Physica,’ vol. 1, p. 105 (1934).



the conditions of orthogonality and normalization, that is to say, directly 
for the purpose for which it is introduced in the application of the variation 
principle, and the details of the procedure were planned to give a series 
of approximations converging to one of the solutions of (12), (13), but 
not necessarily to the particular one for which e12 0. But from any
solution of (6), (12), (13) with e12 ^  0, the standard solution can be 
obtained by solving (20) for y and then using (17).

4— Process of Solution  of F ock’s E quations

So far as the coefficients of P (ls), P (2 in (12), (13) involve the Y0 
functions which themselves depend on the solutions of the equations, 
Fock’s equations are similar to those of the self-consistent field, and the 
same process of successive approximation can be used to deal with this 
feature; but Fock’s equations are more complex than those of the self- 
consistent field in two respects.

Firstly, for given Y 0 functions, the self-consistent field equations (15) 
and (16) are independent, the Lagrange multipliers £ can be determined 
separately and, more important, the solutions of the two equations can 
be normalized independently, whereas Fock’s equations are simultaneous 
equations so that the values of the normalization integrals appear in the 
equations themselves through the constant K. Secondly, in Fock’s 
equations there appears the cross-multiplier e12, which has to be chosen 
so that the condition of orthogonality is satisfied by the functions P (Is). 
P (2s) which are solutions of (12), (13) with the appropriate value of K,f 
or alternatively, if z12 is omitted, some other adjustment must be made to 
secure orthogonality.$ We have used equations (12), (13) as they stand, 
and have adopted a trial-and-error method of determining both K and 
£12, carrying out (directly and indirectly) the solution for different values 
of both these constants, and interpolating for the values for which the 
solution satisfies the conditions (10) and (14) simultaneously. It should 
be noted here that the values of sn  and £22 may not be exactly the same

t  In the self-consistent field calculation without exchange, it would be possible to 
impose an orthogonality condition on the P’s ; this would give equations which included 
the s12 terms of (12), (13), but did not include the Y0 (Is, 2s|r) terms. There would, 
however, be no object in imposing such a condition, as, besides making the numerical 
problem much more complex, it would be placing an additional restriction on the wave 
function for the whole atom, so that the solution of the more complicated problem 
would actually give a worse approximation. With a wave-function for the whole 
atom of the type (1), on the other hand, the condition of orthogonality is no restriction.

+ Fock and Petrashen ( loc.cit.), working with equations with no e12, use a process 
of orthogonalization which has the result that the orthogonalized functions are no 
longer solutions of the equations.

Self-Consistent Field, with Exchange, for Beryllium 15
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for the different trial values of K and s12, so that the determination of 
the solution of (12), (13) for each trial pair of values of K and e12 includes 
the determination of the appropriate values of sn  and s 22.

It is worth emphasizing that the difficulty of handling Fock’s equations 
does not lie in the numerical process of evaluation of a single solution of 
(12), (13) for given functions of Y0, and given values of K and e12, which 
is not to any serious extent more difficult or laborious than the evaluation 
of a solution of the self-consistent field equations (15), (16) for given 
Y0’s, but arises from the need for satisfying the additional conditions of 
orthogonality and normalization, and the greater number of trial solutions 
which may be required before these conditions are satisfied.

The general scheme used for the numerical treatment of Fock’s equa
tions is very similar to that already developed for the solution of the 
equations of the self-consistent field, and can be indicated shortly as 
follows:—

I. Estimate functions Z0 (af3|r), (cf. (5)).
II. Calculate the functions Y0 (a(3|r) from estimated Z0 (a(3|r)’s.

III. Evaluate solution of equations (12), (13) with these Y0’s.
IV. Calculate functions Z0(a(3|r) from this solution.

If these calculated or “ final ” Z0’s agree with the estimated or “ initial ” 
Z0’s, the wave functions and field derived from them can be called “ self- 
consistent,” including exchange, in the same sense as the term was 
originally applied to describe the physical idea which was the basis of the 
“ self-consistent field ” without exchange.

Stage III in this scheme includes the determination of K and e12 to 
satisfy the conditions of orthogonality and normalization, as well as the 
determination of en  and e22, and it is here that the main difference from 
the self-consistent field without exchange appears. Another difference, 
of much less importance, occurs for atomic configurations involving 
one-electron wave functions with l5̂ 0, when Fock’s equations involve 
functions Yfc(ap|r) with k t60, whereas the self-consistent field without 
exchange only involves Yfc functions with =  0: in such cases, the relevant 
Zfc’s would be estimated at Stage I, and calculated at Stage IV, and 
compared with the estimates. The calculation of from Zk required 
in Stage II has already been discussed elsewheref; for =  0 it is usually 
most convenient to do it by inward integration of

as has been the usual practice in self-consistent field calculations.
t  See Hartree and Black, loc. eit.
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It seemed most convenient to the same for P (Is) and

P(2s). Then the maximum P is of the same order of magnitude for 
both, and K2 is quite large (it is actually about 30), so that it is clear on 
inspection of equations (12), (13) that the effect of the “ exchange” 
terms on P (Is) is likely to be much smaller than their effect on P (2s), 
and also probably does not depend greatly on the exact behaviour of 
P (2s). So it appeared best not to try to solve the equations simul
taneously, but first to solve (13) for P (2s), taking P (Is) the same as for the 
self-consistent field, for which preliminary results were available when 
this work was begun, and then, using this P (2s), and also the values of 
K and e12 found from the equation for P (2s), to solve (12) for P (Is), and 
then to use this P (Is), and improved Y0 functions, for a further approxi
mation to P (2s).

It was also found convenient to treat K and (Ks12), rather than K and 
e12 itself, as the adjustable parameters to be determined to fulfil the 
conditions of orthogonality and normalization. We shall call the value 
of K used in a solution of (13) the “ initial ” value of K for this solution, 
and the value calculated by (14) from this solution the “ final” value; 
for the solution required, these must agree.

The first estimates of the Z0’s were based on the self-consistent field 
wave functions, and equation (13) for P (2s) was treated as a variation on 
the self-consistent field equation (16). No attempt was made at this 
stage to obtain more than a rough solution, as it was expected that the 
estimated Z0’s would have to be changed appreciably, as was found to 
be the case. The self-consistent field gives the solution of (13) when 
K =  0, K s12 =  0; solutions were carried out for K =  12, Ke12 =  0 and 
for K =  0, K s12 =  1, and approximate values of K and Ks12 to satisfy 
the conditions of orthogonality and normalization were found by linear 
interpolation in the two variables K and (Ks12). The validity of linear 
interpolation over the large range involved being quite uncertain at this 
stage, a solution was then carried out for these approximate values of 
K and Ke12, which proved to be not far wrong, showing that the departures

r oo
of the final K and of P (Is) P (2s) dr from linear variation with initial

J 0
K and Ke12 were not large. A further linear interpolation then gave

K =  5-62, Ks12 =  - 0 - 4 3 (22)

and final Z0 (ls,|2s) and Z0 (2s, 2s) were then calculated.
It would be possible to take these final Z0’s of one approximation as 

the initial Z0’s of the next, but experience of the self-consistent field

VOL. CL.— A. c
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calculations has shown that this purely iterative process does not always 
converge, and that, when it does, the convergence can usually be hastened 
considerably by taking, as the initial Z0’s of one approximation, the 
final Z0’s of the previous approximation with judicious modifications. 
An attempt at similar modifications was made in this case, and, by 
good luck more than anything else, the revised estimates of the Z0’s made 
at this stage happened to be rather good approximations, and this 
considerably shortened the work.

For this second approximation and subsequent ones, the usual practice 
was to evaluate numerically (a) the solution of (13) as it stands, for 
one pair of values of initial K and of Ks12, and (b) variations of the 
solution (13) for variation of K (for Ke12 constant) and for variation 
of K s12 (for K constant); or, if it seemed advisable, for variations of 
both. Typical results are the following, for the second approximation:—

Initial K KSia Final K P  P(ls) P(2 
J 0 S22

5-5 0 5-484 -0-0087 0-6179 3
5-5 0-1 5-411 —0-00245 0-61785 >
5-4 0-1 5-403 +0-00045 0-6167 ^

whence bilinear interpolation for the values of initial K and Ks12 for 
which

initial K =  final K (normalization condition)
and

r co
P (Is) P (2s) dr — 0 (orthogonality condition)

J 0
gives

K =  5-406, K s12 =  +  0-095. (24)

Using the second estimate of the Z0’s, the solution of (13) was carried 
out, still taking P (Is) as unaffected by the “ exchange ” terms. It was 
found (as shown by the results given above) that the value of K was not 
greatly altered by the change of estimated Z0’s, so that initial values over 
a much smaller range were adequate and linear interpolation was much 
more reliable; on the other hand, Ks12 was considerably affected, being 
even changed in sign.

The approximation to P (2s) at this stage appeared good enough to 
use to investigate the effect of exchange terms on P (Is), using equation 
(12). This effect turned out to be larger than was anticipated, and led to 
the unexpected result that the P (Is) given by the solution of Fock’s 
equation is nearer to the P (Is) of the self-consistent field of Be++ than



to that of neutral Be; consequently it was necessary to revise the estimate 
of Z0(ls, Is), and the function P (ls) to use in solving equation (13)
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for P (2s), and the value of I P2 (Is) dr to use in evaluating the final K

(the change of this integral was more than 1%, and so affected the second 
decimal in K).

The solution of the equation for P (2s) for two further approximations, 
and of that for P (Is) for one, then brought the maximum difference 
between initial and final Z 0’s down to 0-001. This degree of approxi
mation was aimed at, as the approximation to the self-consistent field 
without exchange had been taken to a similar stage, and also because a 
good approximation to “ self-consistency ” greatly simplifies the calcu
lation of energy (cf. § 8). The final values of K, Ks12 were

At this stage, the value of the energy (11) was calculated ( §8),
and as this work was in progress, the paper of Fock and Petrashen came 
to our notice, and suggested a further development in the integration of 
the equations, as a general check on the work.

The value of y required to make s'12 =  0 was determined from (20), 
and the standard pair of functions

which, by § 3, should give a solution of (6), (12), (13) with s12 =  0, were 
constructed; these functions are unnormalized, and are arranged to have 
the same value of (dP[dr)r=0as P (Is) and P (2s) as is convenient for 
numerical work and for comparison purposes.

Then, as a final check, new estimates of Z0 were constructed from the 
Pr functions (26) by (6), and, using these estimates, a complete independent 
solution of (12), (13), including the determination of the values of K and 
K s12 to satisfy the conditions of orthogonality and normalization, was 
carried through. The value of Ks12 found to be required was 0-006, 
and the final Z0’s nowhere differed from the estimates by 0-001. The 
small departure of Ks12 from the expected value zero is probably due 
firstly, to the fact that the previous approximation was not exacdy “ self- 
consistent,” and secondly, to accumulation of rounding-off errors at 
various stages of the work.

A new pair of standard functions P, to give a solution of (6), (12) and 
(13) with e'12 =  0 was then found from this later approximation, again

Jo

K =  5-442, Ke12 =  +  0-063. (25)

Pf (Is) =  [P (Is) +  (y/K) P (2s)]/(I +  y/K) 
P, (2s) =  [P (2s) -  yK P (Is)]/(I -  yK) } (26)
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using (26), and are tabulated in Table I; four decimal places in P were 
kept throughout the calculations, the values actually tabulated were ob
tained by multiplying by 2 and rounding off the fourth decimal. The 
maximum differences from similar values of Pr given by the previous 
approximation are 0-001 for P (Is) and 0-003 for P (2s); these differences 
occur near the main maxima of the wave functions and are less than 0-1% 
of these maxima. Since the two determinations of Px were made by 
completely separate solutions of the equations, with different values of 
the constant occurring in them, this close agreement of the final results 
provides a very close check on the overall accuracy of the work.

5— Some D etails Concerning the Solution of Equations

One or two points arising in the numerical solution of equations (12) 
and (13) for given Y 0’s, K, and Ke12 are worth putting on record.

The solution of (13) for P (2s) was carried out in the usual way by 
integrating outwards from r — 0, and inwards from a large r (actually 
r =  10) and determining e22 so that the solutions joined smoothly 
1 dVp was the same for both) at some convenient intermediate radius

(actually r =  3-6), which was chosen so that the term in (13) in
volving P (Is) was negligible outside it, so that the inward integration 
could be carried out, using the first order equation for the quantity 

d  „ ^
’l =  -  dr° 0g P>-

This process, however, is not feasible for the (Is) equation (12), since 
the term in P (2s) is appreciable over the whole range unless e12 =  0. 
Outward integration of (12) over the whole range was tried, and was 
found possible, but not satisfactory on account of the very rapid exponential 
increase, for large r, of the effects of any error (including, of course, the 
inevitable rounding-off errors involved in working to a finite number of 
significant figures) which masked the real behaviour of the “ tail ” of 
the (Is) wave function.

The difficulty at this point can be avoided, or at least much lessened, 
by working with the equations with s12 =  0, and satisfying the condition 
of orthogonality in some other way. But the use ol e12 as an adjustable 
parameter seemed the simplest and most direct way of satisfying this 
condition, and a similar difficulty may arise in other cases in which there 
is no adjustable constant like e12 here, so an alternative method seemed 
desirable, and a quite satisfactory one was found, which does not



require the construction of the Green’s function used by Fock and 
Petrashen.

When solving (12) for P (Is), P (25) is regarded as given, so that (12) 
is an inhomogeneous linear equation for the one function P (Is). Let 
p  (Is) be any particular integral of this equation which tends to 0 as 
r ->oo ; any complementary function which tends to 0 as r -* oo must be

a multiple of e~hdr, where r\ satisfies the first order equation

df) , . 2N -  2Y0 (Is,l5|r) -  4Y0 (25, 2s\r)
I F =  T' +  '  7--------------------------- <27>

as in the self-consistent field calculations, and for the inward integration 
this equation is quite convenient. A particular integral (I5) can also 
be evaluated by integration inwards; it was found that an adequate 
approximation to initial conditions for this inward integration was given 
by putting d*F (Is)/dr2 =  0 in (12), at a sufficiently large value of
Different initial conditions give particular integrals differing by multiples
of the complementary function e~rdr, and this increases very rapidly 
as r decreases, so that slightly different initial conditions may give 
solutions p(I5) which vary considerably, but it does not matter to the 
final result which one of these is taken.

The inward integration of (12) for the particular integral p (I5), and 
the integration of (27), are taken as far as the radius at which the outward 
and inward integrations are compared. If the result P (I5) of the outward 
integration is a solution of (12) which tends to 0 as r -> 00, as is required, 
then P (I5) — p(I5) must be a multiple of the complementary function

e~hdr; that is — ^  [P (I5) — p  (l5)]/[P (I5) — p  (I5)] must agree with the

value of v) obtained by inward integration of (27). The value of en  
is adjusted until this is the case, and when P (I5), p  (I5) and •/) have been 
found for this value of sn , the solution P (I5) for r greater than r0, the 
radius at which the join of the two solutions is made, is given by

P (l5|r) =  p  (l5|r) +  [P (l5 |r0) — p (l5 |r0)] e~\rf r' (28)
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6— A n  A lternative , M ethod of H a n d lin g  the Equations

Another kind of method for the numerical solution of Fock’s equations 
was tried, and though it did not seem so satisfactory as the method outlined 
in the previous two sections, this may have been due partly to comparative 
lack of familiarity with methods of this kind.
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This alternative method was suggested by Torrance’s methodf of 
handling the equations of the self-consistent field; the particular character
istic of this method is that the field is built up from the radial wave functions 
concurrently with the solution of the equations for the behaviour of the 
wave functions in the field, whereas in the more usual way of handling 
the equations of the self-consistent field, the processes of constructing 
the field, and finding the wave functions in it, are two separate stages, 
which are carried out alternately and not concurrently. Torrance’s 
method of approach is clearly applicable to Fock’s equations; its applica
tion can be illustrated adequately by considering the solution of (13) for 
P (2s), regarding P (Is), and so Y0 (Is, Is), as given; it can be extended to 
apply to (12), (13), regarded as simultaneous equations with none of the 
Y0’s given.

To avoid elaboration, we shall assume the given P (Is) to be normalized,
“  f  oo

so that K = P2 (2sIr) . Then from (6) it follows that
JO

d2
"^2 Y0 (Is, 2 s |r )=  -  

d2W2 Y 0 (2s, =

P (ls|r) P (2s|r) 
K

P2 (2s | r)
K V ’

(29)

(30)

and these equations enable the Y0 functions occurring in (13) to be built 
up from P (2 s |r )  as the solution of (13) proceeds. In other words, 
(13), (29), (30) can be solved as a set of simultaneous equations: that they 
are non-linear is, of course, no difficulty in numerical work. There are 
three parameters e22, K, e12, to be determined so that the solution P (2s) 
of these three equations satisfies three conditions, namely:—

(a) P (2s) -> 0 as r-> oo,

(b) f°° P2 (2s) dr =  K2,
Jo

(c) r  P (Is) P (2s) dr =  0.
Jo

One apparent difficulty is that the initial conditions for the solution 
of (29), (30) are not fully known, for from (6), Y0(a(3|0) =  0, but

t  ‘ Phys. Rev.,’ vol. 46, p. 388 (1934). One of us (D. R. H.) is indebted to Dr. 
Torrance for an interesting account and discussion of his method, and for an advance 
copy of his paper. A similar method has been used by Caldwell for solving the 
equations of the self-consistent field for helium-like atoms, using the differential 
analyser of Dr. Bush.
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d Y 0 (a(3|0)/</r =  PN (a|r) PN ((3|r) r_1 dr which is unknown at the

start of the integration. On the other hand, solutions of (30) (for example), 
differing in the value of JY 0 (2s, 2s\0)/dradopted, differ only by a 
term proportional to r, whose coefficient can be incorporated in e22 when 
the Y0, determined by integration of (30), is used in (13), and similarly 
for the solution of (29). This way of avoiding the difficulty, however, 
only raises another, for the Lagrange multipliers s12 and may then 
contain unknown (and perhaps quite large) contributions from this 
source, and estimation of appropriate values for which to make trial 
solutions becomes rather speculative; also it is difficult to estimate the 
effect, for example, of a change in K on the value of required to give 
P the right asymptotic behaviour.

Further, the outward integration for large r is unsatisfactory for the 
reason, mentioned in § 6 in connection with P (Is), that the solution of 
(13) becomes very sensitive to small errors, and in this case this reacts 
on the functions Y0, through equations (29), (30). Inward integration 
for the simultaneous equations does not appear to be practicable.

As Torrance points out, a method of this kind only involves the esti
mation of parameters, and so may be expected to provide a simpler 
process of approximation than the more usual method of handling the 
equations of the self-consistent field which involves the estimation of 
functions (the Z0’s), and, in the case of Fock’s equations, some para
meters also. It seemed at first sight a method of attack particularly 
suitable for Fock’s equations; but, as far as our experience goes, an 
extension of the original self-consistent field method seems in practice 
the easier to carry out, though it is possible that greater familiarity with 
Torrance’s method would modify this opinion.

7— R esults and D iscussion

In comparing the solution of Fock’s equations (12), (13) with that of 
the self-consistent field equations (15), (16), it is convenient to distinguish 
by a suffix fthe radial wave functions forming the standard solution of 
Fock’s equations, as defined in § 3, and quantities derived from them, and 
by a suffix 5 the radial wave functions of the self-consistent field and 
derived quantities.

The wave functions P, (Is), P, (2s) are necessarily orthogonal, but 
Ps (Is), Ps (2s) are not, and it is often convenient to form from them an 
orthogonal pair. Taking Ps (Is) and Ps (2s) to have the same value of 
(dP/dr)r==0, we shall write Ps (2s) for the linear combination of them



which is orthogonal to Ps (Is)and has the same value of ( , that

P.' (2s) =  [Ps (25) -  (3PS (ls)]/(l -  (3), (31)
where

r oo / f 00

P =  P. (U) Ps (2s) dr/  P,2 (Is) dr, (32)
Jo . / J o

the value of (3 in this case is 0-2878.
The results of the calculation of the solutions of Fock’s equations are 

given in Table I ; the radial wave functions P are not normalized, but 
have ( dP/dr)r=0 — 20, as for the solution of the self-consistent field
equations already published,! with which the present results should be 
compared. The Z 0(a(3| r)functions, or rather functions derived from 
them, which are more convenient to use in practical work, are also 
given in Table I ; in comparing these results for the corresponding 
ones for the self-consistent field, it should be remembered that for the 
Schrodinger charge distribution of the (ns)2 group, 2 [1 — Z0 (ns, )] 
is the total charge lying outside a radius r, and that a decrease of this 
quantity, for given r, indicates a contraction of that group.

T able I
Radial Wave Functions

24 D . R. Hartree and W. Hartree

r P(1 sy P (2s) 2[1 — Z„(ls, Is)] 2Z0 (Is, 2s) 2[1 -  Z0(2s, 2s)]
0 0 0 0 000 0-000 2-000 0-000 2-000
0 0 2 0-369 0-369 1-999 0-000 2-000
0 0 4 0-682 0-681 1-993 0-001 2-000
0 0 6 0-946 0-941 1-978 0-004 1-999
0 0 8 1-166 1-156 1-954 0-008 1-998
0 1 0 1-347 1-329 1-920 0-014 1-997
0 1 2 1-496 1-466 1-876 0-022 1-996
0-14 1-615 1-570 1-824 0-032 1-994
0 1 6 1-709 1-645 1-764 0-042 1-992
0 1 8 1-781 1-694 1-699 0-054 1-990
0-20 1-834 1-719 1-628 0-066 1-988

0-25 1-898 1-698 1-440 0-097 1-983
0-30 1-889 1-580 1-246 0-128 1-978
0-35 1-831 1-391 1-059 0-155 1-974
0-40 1-742 1-150 0-887 0-178 1-971
0-45 1-633 0-873 0-733 0-194 1-970
0-50 1 -515 0-572 0-600 0-206 1-969
0-55 1-392 0-256 0-486 0-212 1-968
0-60 1-270 -0 -0 6 8 0-391 0-213 1-968

t Hartree and Hartree, ‘ Proc. Roy. Soc.,’ A, vol. 149, p. 210 (1935).



Self-Consistent Field, with Exchange, for Beryllium 25

Table I— continued

r P(l*) P (2s) 2[1 — Z0 (Is,Is)] 2Z0 (Is, 2s) 2 [ l~ Z o  (2s, 2s)]
0-7 1038 -0 -7 1 7 0-247 0-204 1-967
0-8 0-834 -1 -3 4 3 0-153 0-186 1-963
0-9 0-661 -1 -9 2 6 0-093 0-162 1-954
1 0 0-518 -2 -4 5 4 0-056 0-137 1-937
1 1 0-403 -2 -9 2 2 0-033 0-113 1-911
1-2 0-311 -3 -3 2 8 0-019 0-091 1-876
1-3 0-239 -3 -6 7 4 0-011 0-072 1-832
1-4 0-183 -3 -9 6 2 0-006 0-056 1-780

1-6 0-105s -4 -3 7 9 0-002 0-033 1-654
1-8 0-060 -4 -6 1 5 0-001 0-019 1-509
2 0 0-034 -4 -7 0 4 0-010 1-353
2-2 0-019 -4 -6 8 0 0 005s 1-195
2-4 0-011 -4 -5 7 1 0-003 1-041
2-6 0-006 -4 -4 0 1 O-OOls 0-897
2-8 0-003s - 4 1 8 9 0-001 0-765
3 0 0-0018 -3 -9 5 0 O-OOOs 0-646
3-2 0-0009 -3 -6 9 5 0-542
3-4 O-OOOs -3 -4 3 4 0-451
3-6 0-0002 -3 -1 7 4 0-373
3-8 0-000! -2 -9 1 9 0-306
4 0 -2 -6 7 4 0-250

4-5 -2 -1 1 2 0-149
5 0 -1 -6 3 9 0-086
5-5 -1 -2 5 4 0-048
6 0 -0 -9 4 9 0-027
7 -0 -5 2 9 0-008
8 -0 -2 8 7 0-002
9 -0 -1 5 2 0-001

10 -0 -0 7 9

12 -0 -021
14 -0 -0 0 5
16 -0 -0 0 1
s 9•4665 -0 -6 1 8 6

f V  dr

ooin00 55-94

The difference between P/ (Is) and Ps (Is) is small but appreciable; it 
is too small to be shown graphically, and is most easily seen from the 
tables. Pf (Is) is slightly the more compact and, as already mentioned, 
agrees more closely with Ps (Is) for Be++ than for Be, so that, in this case 
at least, the perturbation of the core by the “ series ” electrons is con
siderably smaller when exchange is included than when it is not.
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A graphical comparison of the various (2s) wave functions is made in 
two different forms in figs. 1 and 2, fig. 1 showing unnormalized P’s, all 
having the same value of (dP/dr)r=0, such as are convenient to use in 
the numerical integration of the equations, and in some applications, 
and fig. 2 showing normalized P2’s, which have a direct physical inter
pretation as radial charge densities, and which are also useful in some 
other applications.

r  (atomic units)

P(2 S)

Fig. 1—Unnormalized radial wave functions P (Is), P (2s), for Be. ----  from
solutions of Fock’s equations, ( P / ) . -------- from solution of equations of self-
consistent field, (P,). — --------- P (25) from solution of equations of self-

/^p\
consistent field, modified so as to be orthogonal to P (U), (P4). ( —  ) = 1 0

V dr j f=0
in all cases. The difference between P/ (I5) and Ps (I5) is too small to be shown 
on the scale of the figure.

The difference between Pr (2s) and Ps (2s) is considerable; it can be 
expressed in general terms by saying that, compared to Ps (2s), Py (2s) is 
more compact, and also smaller near the origin compared to its value for 
large r. Further, it might be thought that the (2s) wave function Ps' (2s), 
made orthogonal to (Is), would be a better approximation than Ps (2s) to 
P/ (2s), but the results show that this is hardly the case. If the wave 
functions are compared as in fig. 1, then Ps (2s) is definitely the better 
approximation to Pf (2s), and if compared, as in fig. 2, Ps (2s) is only
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slightly the better approximation to P, (2s) in the neighbourhood of the 
main maximum of P2, and near the origin it is too small by a greater 
factor than Ps (2s) is too large. This is shown in another way by the 
values of the normalization integral when the functions are compared as 
in fig. 1, which are

for Ps (2s) 47-0)
f°°P2</r for P, (2s) 55-9 (33)
0 for P , (2s) 92-3 i

-> r  (atom ic units)
Fig. 2—Normalized P2 (2s) for Be. ---------  from solution of Fock’s equations,

(P/2) . --------- from solution of equations of self-consistent field, (P 2).
— -------- ditto, modified so that P (2s) is orthogonal to P (Is), (Ps 2).

The general nature of these differences between Pf (2s) and Ps (2s) 
suggests that the solution of Fock’s equations is likely to give a con
siderably better agreement between calculated and observed atomic 
properties than the solutions of the equations of the self-consistent field, 
though no quantitative comparison can be made in this particular case.

Two properties which are rather simply related to the behaviour of 
the wave functions are the diamagnetic susceptibility which depends on 
the average value of r2, and the spin and hyperfine structure separations 
of terms of the optical spectrum, which depend on the relation between 
the behaviour of the wave function for small and large
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Wave functions calculated by the method of the self-consistent field 
appear always to give too large a value for x,f and the contraction of the 
wave functions brought about by the inclusion of exchange terms will 
certainly lessen the disagreement in this respect. The values of r2 for 
the (2s) wave function in this case are (r2)s =  9-54, (r2)f — 8-42, a 
decrease of about 12%. A bigger decrease may be expected for atoms 
with complete shells, % for which there are exchange terms between wave 
functions with the same principal quantum number, which overlap to a 
much greater extent than the (Is) and (2s) wave functions in the present 
case, and also a bigger decrease may be expected for negative ions on 
account of the sensitiveness of the outermost group. Hence for sub
stances like NaCl, for which the negative ion gives much larger con
tribution to r2, a decrease of perhaps 20% to 25% in the calculated values 
of x may be expected, which would bring them into much better agree
ment with the observed values.

It is probably the experience of everybody who has tried to calculate 
spin or hyperfine structure separations for optical terms from self- 
consistent field wave functions, that the values calculated using Ps 
functions are too large, and those calculated using functions like Ps<, 
orthogonal to the core wave functions with the same /, are too small, 
usually by a greater factor than the former are too large, showing that the 
correct normalized wave function lies near the origin, between Ps and 
Ps , and nearer to the former, as Py is found to do in the case worked out 
here.

Two points about the result are worth noting in connection with the 
integration of the equations, as they provide suggestions which may be 
valuable in working out the solution of Fock’s equations in other cases.

The first point is that, as the results (31) show, Ps gives a much better 
approximation than Ps> to the value of the normalization integral using Pf : 
this is relevant in connection with the choice of an initial trial value of 
K in (13).

The second point is that the solution of (13) with z12 =  0 already gives 
a function P (2s), which is much more nearly orthogonal to P (Is) than 
Ps (2^) is. This is shown by comparing the value

I *P (Is)P (2s) 0-0045
Jo

t  See, for example, Hoare, ‘ Proc. Roy. Soc.,’ A, vol. 147, p. 88 (1934).
+ For Na+ the corresponding decrease, calculated from Fock and Petrashen s 

results, is about 13%; for a given configuration, the effect of the exchange terms would 
be expected to be smaller the greater the net positive charge of the system concerned.



for K =  5-5, Ke12 =  0, in the results (24), with the value 0-1349 for the 
self-consistent field; the inclusion of the term [2KY0 (Is, 2s\r)fr\ P (Is)

poo

alone has actually altered the sign of P (Is) P (2s) dr.
Jo
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8— E nergy  V alues

In view of the use of the approximate energy value

E = j r*HY rf-r/j f*Hi
as an analytical criterion of the “ goodness ” of an approximate wave 
function, it is interesting to evaluate it for the solution of Fock’s equations, 
and for the solution of the equations of the self-consistent field, and to 
compare these values with one another and with the experimental value.

The I integrals in the expression (11) for E can be simplified by sub
stitution for dF?\dr2 from the equations satisfied by the P’s. If these 
satisfy Fock’s equations (12), (13) and the Y 0’s in those equations are 
given by (6), then

21 (Is) =  -  sn  -  2F0 (Is,Is) -  4F0 2s) +  2G0 ,
21 (2s) =  -  eM -  4F„ (Is, 2s) -  2F0 (2s, 2s) +  2G0 (Is, 2s) j J'j ' ’

and

E = - e u - e 22- F  0 (Is, l s ) - 4 F 0(ls, +  2G0(ls,2s). (35)

If the Y0’s used in solving (12), (13) are not exactly consistent with the 
P/ (Is), Pf (2s) which are solutions of these equations, these formulae 
will not be exact, and it is partly in order that they should be sufficiently 
exact that the process of approximation to “ self-consistent” Y 0’s was 
carried as far as it was.

If the P’s satisfy the equations (22), (23) of the self-consistent field, a 
similar substitution can be carried out, but does not lead to such a simple 
result; the details of the calculation of energy values for such a case 
have already been discussed elsewhere,! and need not be repeated here.

The values of the I, F, G integrals and of the E, for the solutions of 
Fock’s equations,! and of those for the self-consistent field, for neutral

t  SeeHartree and Black, loc. cit.
t These integrals were evaluated using the solution of Fock’s equations giving 

the result (25), not with the standard solution P/ for which e12 =  0. This does not 
affect the value of E, but the separate contributions to E may be slightly affected.
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Be, and also for Be++ (for which the solutions are the same since there 
are no exchange terms) are given in Table II. The values of l f were 
calculated from (34); those of Is involved integrations independent of 
those for the F 0’s.

T able II—Calculated  Contributions to E nergy , a nd  T otal 
E nergy , of N ormal States of Be a n d  Be++

Be neutral
S.C.f. Fock Be++

21(1 s) .............. -15-873 -15-882 —15-895s
21 (2j) .................. -2 -9 9 3 -3 -1 7 9 ,
F 0(lJ, Is).............. +  2-266 +  2-273 2-278
4F0( lJ ,2 y ) .......... l-7575 1*926,
F0 {2s, 2s) .......... 0-320 0-3435
— 2G0 (1-s, 2s) . . . . -0 -0 3 5 -0 -0 5 2
2E ...................... -29 -115 -29-140 -27-235
2E(Be+2) — 2E(Be) 1-880 1-905 2E(Be+3) -  2E(Be+2) 11-235

calc.
Ditto obs............... 2-024 Ditto obs. 11 • 307 ± 0 • 008
Obs.-calc................ 0-144 0-119 0-072 ±0-008

The numerical work involved in the calculation of the energy values E 
is difficult to check thoroughly; the available checks, such as evaluation 
of F 0 (Is, 2s) by the two alternative forms indicated in (8), were used, but 
it seemed desirable to make a completely independent check of the whole 
set of calculations, especially as the energy difference Er — Es came out 
much smaller than was anticipated.

Such a check is provided by a direct calculation of this energy difference 
in terms of the differences between the wave functions Pr and Ps: the 
stationary property of E used to give Fock’s equations enables this energy 
difference to be put in a comparatively simple form.

It is convenient now to work with normalized wave functions. Let 
PN (ls|r), PN (2s|r) form a normalized solution of Fock’s equations 
(not necessarily with s12 =  0), and let PN (a|r) +  SPN (a|r) (with 
a =  Is and 2s) any other pair of normal orthogonal functions. Then 
evaluating the variations SE of E for the variations of the radial wave 
functions P, retaining all terms and not only those of the first order, we 
obtain two integrals involving the SP’s linearly, and a number of others 
involving squares and products of the SP’s. The first two integrals vanish 
to the first order, since this is the condition from which Fock’s equa
tions are obtained, but on substitution of (12), (13) in them some second 
order terms remain, and these with the other integrals give finally an 
expression for SE which can be written as the sum of nine integrals



which are listed in Table III; this expression is exact, not only second 
order. The values of these integrals when the varied wave functions 
PN +  SPN are the normalized orthogonal pair derived from the self-con
sistent field, are also given in Table III. It will be seen that these are all 
of much smaller magnitude than most of those occurring in the evalu
ation of the separate energy values E, given in Table II, and are
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T able III—Contributions to D ifference between E nergy  V alues 
C alculated  u sing  Solutions of F ock’s Equations a n d  those of 
s.c .f . Equations

(All integrals are from — 0 to oo )

_L

-  2

+

+  4

-  2

d  “i2
7 r SP(U)

d  l 2
-jr SP (25) J dr

2N -  2Y0 (If, I5) -  4Y0 (2s, 2s)

2N -  4Y„ (Is, Is) -  2Y0 (2s, 2s)

2Y0 (Is, 2s) SP (Is) SP (2 )̂ dr

8Y0 (ls, is)

SY0 (15, Is)

SY0 (2s, 25)

SY0 (25, 25)

S [P2 (Is)] dr

S [P2 (25)] dr

S [P2 (25)] dr

S [P (I5) P (25)] dr

Total

enJ [SP (I5)]2

e22 ] [SP (25)]2

+  0 0003a 

+ 0  03865

-ooooc

—0 02696 

-OOOOO3 

+OOOOO3 

+ 0  00016 

+ 0  00155 

—000175 

0•01187

comparatively easy to evaluate numerically, since for most of them two- 
figure accuracy is already sufficient to give a fourth decimal in SE. A

t  (sp) dr in SE arise from one
rao

point to be noted is that the terms
Jo

foo ^ 2
integration by parts of — S P — (SP) dr ; numerical differentiation of

Jo w*
the comparatively small quantity SP is practicable, whereas use of a 
corresponding transformation of the I integrals in the evaluation of E 
would probably not be satisfactory, unless were obtained by integra-
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tion of d2P/ dr2,which would involve a good deal of additional computing,
rather than by numerical differentiation of P, which would be difficult to 
carry out to the accuracy required.

The value of SE obtained from the sum of the terms in Table III is 
0-0119, which is probably correct to 1 or 2 in the fourth decimal, in 
excellent agreement with the difference of E values obtained from Table 
II, which is 0-0125 and is not certain to 1 in the third decimal. This 
provides a complete check on the calculation of the energy values.

The values of 2E in Table II are the calculated total energies of the 
whole atomic system, expressed as multiples of the ionization energy of 
the hydrogen atom (£ atomic unit). The differences of the values of 
2E for neutral Be and that for Be++ are the energies, in terms of this 
unit, required to remove two electrons from the normal state; that is to 
say, they are the values of the sum of the ionization energies of Be and Be+. 
This sum is a quantity for which an accurate experimental value is avail
able,! since the spectra of both these ions have been fully analysed. Also 
the value of 2E for Be+++ is — 16, so — 16 — 2E (Be++) is the ionization 
energy, in the same units, of Be++, for which there is an approximate spec
troscopic value, t  The absolute value of the difference between calculated 
and observed values of the latter ionization energy is very similar to the 
corresponding difference (0-077) for helium.

It will be seen that for neutral Be the solutions of Fock’s equations 
give a smaller value of the total energy than that given by the solutions 
of the equations of the self-consistent field, as must be the case. But the 
improvement in the calculated value for the sum of the ionization energies 
of Be and Be+ is disappointingly small, being only about 20% of the whole 
difference between the value calculated for the self-consistent field and 
the observed value. This shows that if the energy value is used as the 
criterion in judging the importance of the various approximations made 
in the self-consistent field method, the neglect of exchange is not the most 
important of them. On the other hand, the considerations of the previous 
section suggest that there is a considerable improvement of the wave 
function regarded as a basis for calculation of other atomic properties. 
So that, as far as one can judge from the present results, it seems that 
the inclusion of exchange terms improves the wave function considerably, 
though not in a way which has much effect on the energy; this is rather 
surprising in view of the use of the energy as the criterion for the “ best ” 
wave function-of the kind assumed.

t The observed values have been taken from the Tables in Bacher and Goudsmit’s 
“ Atomic Energy States ” (McGraw Hill, 1932).
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9— Summary

Fock’s equations for the self-consistent field of an atom, including 
exchange effect, have been completely solved numerically for the normal 
state of neutral Be.

The main features of the process of their solution are described and 
the results and energy values calculated from them discussed. In con
nection with the numerical calculations of energy values, which are difficult 
to check thoroughly, a new check, depending on the direct calculation 
of the difference of energy values calculated using the solution of Fock’s 
equations and using any other wave functions, is developed and applied.

The inclusion of the exchange terms has a small but appreciable effect 
on the (Is) wave function, which becomes more like that for the Be++ 
ion, and a considerable effect on the (2s) wave function, which contracts, 
and also becomes smaller near the origin compared to its maximum 
value. It is shown that these changes are qualitatively of a kind to 
bring calculated values of certain atomic properties into better accord 
with experiment, though no quantitative comparison can be made in 
this case.

The calculated energy value is found to be brought into slightly better 
accord with observation, though the improvement is not great.
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