PHY 742 Quantum Mechanics Il
1-1:50 AM MWF Olin 103

Plan for Lecture 11

Time dependent perturbation theory
Ref: Chapter 15

1. Introduction
2. Sudden approximation
3. Time harmonic perturbations
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Topics for Quantum Mechanics Il
Single particle analysis
Single particle interacting with electromagnetic fields — EC Chap. 9
Scattering of a particle from a spherical potential — EC Chap. 14
More time independent perturbation methods — EC Chap. 12, 13
Single electron states of a multi-well potential = molecules and solids — EC Chap. 2,6
Time dependent perturbation methods — EC Chap. 15
Path integral formalism (Fey ) — EC Chap. 11.C
Relativistic effects and the Dirac Equation — EC Chap. 16

Multiple particle analysis
Quantization of the electromagnetic fields — EC Chap. 17
Photons and atoms — EC Chap. 18
Multi particle systems; Bose and Fermi particles — EC Chap. 10
Multi electron atoms and materials

Hartree-Fock approximation
Density functional approximation

Course schedule for Spring 2020

(Preliminary schedule -- subject to frequent )

| Lecture date | Reading Topic [ HW | Due date
1_[Mon: 01/13/2020 |Chap. 9 [Quantum mechanics of electromagnetic forces {11 [01/22/2020
2 |Wed: 01/15/2020 [Chap. 9 _[Quantum mechanics of particle in electrostatic field {#2[01/2412020
[3 |[Fri: 01/17/2020 [Chap. 9 [Quantum mechanics of particle in magnetostatic field {#3 0172712020

Mon: 01/20/2020 [No class _[Martin Luther King Holiday
|4 |[Wed: 01/22/2020 [Chap. 14 [Scattering theory {14 [01/29/2020
/5 |[Fri: 01/24/2020 [Chap. 14 [Scaftering theory #5_ [01/31/2020
6_[Mon: 01/27/2020 [Chap. 14 ing theory 6
7 |Wed: 01/29/2020 [Chap. 12_|Variational methods {7 [02/05/2020
/8 |[Fri: 01/31/2020 [Chap. 12 |Variational and other approximation methods {#8 02/0712020
/9 [Mon: 02/03/2020 [Chap. 2,6 [Single particle states of molecules and solids {#9 (021012020
10 [Wed: 02/05/2020 [Chap. 2,6 |Hz" molecular ion; Born Oppenheimer approximation #10 [02r12/2020
i1 Fri: 02/07/2020 Chap. 15 |Time-dependent perturbations #11 02/14/2020
12 [Mon: 02/10/2020
[13|Wed: 02/12/2020
[14][Fri: 02/14/2020
115 [Mon: 02/17/2020
[16 [Wed: 02/19/2020
la7 e Anmaimann
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Time dependent Schrodinger equation

Time d

0
ih—|w)=H
SV =Hl)
For the case that the Hamiltonian itself does not depend on time,
we assume |y (r,1)) = z(r)e ™"
., 0
lhE‘W>ZH‘V/> = Ey(r)=H(r)y(r)

More generally, there are multiple solutions to the eigenvalue
problem:  H(r)g,(r)= E, y,(r)

= |wr)=).Cz, e ™"
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Sudden approximation

This method is useful when there is an abrupt change in the
Hamiltonian of the system

Suppose that for t <0, H =H"
fort>0, H=H?®

This can happen when we have a nuclear process occur which is “sudden”
for the electronic states. It is also a reasonable approximation for some
X-ray absorption processes in which an electron is suddenly removed
from the core of an atom.

Sudden approximation -- continued
The most convenient method to analyze this system

is to find the complete sets of eigenvalues of the two

Hamiltonians:
Hly!)=E|w))
H|w?)=E!|w?)

Suppose thatat =0, |¥(t=0))= ‘y/;>
It is reasonable to assume that for ¢ >0:
[%(>0)=>C,|w’)e ™"

B
v

where C, =

i)




Example of a H-like ion initially with Z4=2, Similar to
transforming to one with Z8=1. HW #11
1:5
In this case, C,= <y/ff ‘y/:>: ﬁﬁ
1 27
0.5
) 1 2 3 4 5
=» Probability of H-like ion remaining in ground state: KW: ‘,/,(;1>2 ~70%
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Another example -- Harmonic oscillator with time varying frequency

2 2
H= —h—d—z + lmaz2 (t))r2
2mdx* 2

2
[0)

, fore<0

where @’ () =
w, fort>0

1/4
Suppose thatat =0, |¥(r =0))= "/’64> _ ( ma;’A j oot
T

Probability that system remains in ground state for 7 >0:

with ‘l//éf> :(%jl 4 e,mmuv“z an
T

(o, "’a’zf)1 ’

P=[(elws)

Range of validity of sudden approximation

Sudden = finite switching time A¢

At|H, - H |
h

For harmonic oscillator example, approximation

Analysis neglects terms of magnitude

assumes At‘a)B - a)A‘ <1




Treatment of time-dependent perturbations
)
ih—|y)=H(®)|y)
ot
H(t)=H"+eH'(1)

We approach the problem using the
complete basis set of H*:

H° ‘no> _ E/l’) n0>
It is reasonable to assume that

(@)=Y c,@0)n")=> k@0 ™"

1

")

2/7/2020

10

Treatment of time-dependent perturbations -- continued
n">
Ly = (HO + eh!

i at‘t//>— +eH (1) ‘y/)

Z(ih—dk(’l’l(t) —eH' (K, (z))e"fﬁ’ »

n

[y () =Xk, (e "

n“> =0
Projecting this equation with a particular zero-order state < f° ‘ :
dk . (t i(EQ-ES)im
ihT;( ) :ez<f°‘H‘(t)‘n°>kn(t)e(E' a2
t "

11
Treatment of time-dependent perturbations -- continued
dk (1) i(E9-EYn
ih— "= CNH' Ok, (e
" Zn;<f |H' ()| n" )k, (0)e
Perturbation expansion for time-dependent coefficients:
k() =k, + ek, (6) + € k3 () + ..
0
Zero order equation: —2~=0
dt
s-order equation for s > 0:
dk 1 - O\ psmty I(ES-EDYin
—m == (m"|H t)|n" )k, ()e'"
" mg( |[H'(0)]n" )iy ()
12




Treatment of time-dependent perturbations -- continued

1" -order equation, assuming that kf =0,

ﬁ <m0 ‘Hl(t)‘lo>ei(E,‘f,—E)‘)r/h

1

e in

Example:
Suppose that H' (1) = H'h(t)

0 fort<Oand¢>T

where h(t) = .
2sinawt  for 0<t<T
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Treatment of time-dependent perturbations -- continued
For this example
dk!
—2=0 fort<Oort>T
t

dt ih 2i
forO<t<T
mC |7 1° @+, )T i(~ota, )T _
:k;(t)=2< A1) ¢ 1 e 1
ih 2 0+, -0+,

where @ =(E2—Ef)/h fort>T

ml

14
Fort>T
-2 I
in 2 o+, -0+,
where @, E(E,?, —Ef)/h
4 -
kL of :?Km"\ﬂ‘ \1°>‘z x
sin’ ((w+a)m, )T/ 2) . sin’® ((—a)+ )T/ 2)
(0+a, )z (_w+a’m1)z
~ 1’;? <m° ‘H‘ ‘1°>‘2 (5(a)+ 0, )+6(-0+ao, ))
15




Treatment of time-dependent perturbations -- continued

Behavior of k), (T) in the neighborhood of @ =|w,,|

2/7/2020

4 2 0 2 4
o-lo,| sin? [LT)
Note that Ji,zdr:”—T
X 2
16
ing the rate of transitions | 2 f
2
o O 2200 ol o\
_ L2 ol 1| g0 0 _ 0 _ 0 _ 120
N (o) (s(no+E) - E7)+6(-ho+ E) - E7))
Fermi “Golden” rule
0
E;
ho
E]
17
Example
H atom in presence of electric field
H'=—eFz representing field as scalar potential
~ ecl; . .
A" = 7}72 representing field as vector potential
iwmce
Note that these two are equivalent in
the ideal case:
LASAPY N a
m ih| 2m | ih
0 0
oP,o_l 0 0 o_E/_EI 0 0
()= e Yy = =5 )
iy (1)
18



Example
H atom in presence of electric field
H'=—eFz

=—eFrcosd

Some H° eigenstates for H-like ion:

1/2
Z3 ZZ 2
e Z) e e

representing field as scalar potential
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a,m 2a,
2\ zr Z% 1
0 _ _ LY _7r12a, 0 __ 1
s _2p0>_[32a3ﬂ] P Ay
19
<f" H' I°>:<f"‘—eFrcosl9‘1">

1/2
. o A _
H' eigenstates for H-like ion: ‘10 = ls> = [—] el

3 1/2
‘fo=2170>:[ z ] ﬁe’z'z”"cosﬁ

R2ayz ) a,
3 12 @
<f°‘[:11‘1°>=—eFZ3—[i] 2ﬂgj-r3dr£e’szr“"
aym\ 32 39 a,
3 12 4
=—e, Z} (i 271'E G Ix“dx e
aym\32 3\Z ) 3
__eFa, 256

"2z 243

20
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Summary of results for resonant transitions for H-like ion 1s22p,

R, “27”<f0

gl

1) 6(~heo+ £~ E?)

-~ Fa, 256
() -

2 2
ho=E B =32¢ _ 10204 2° v
4 2,




Digression: Notion of oscillator strength for transition between states [2>n:
fu=2me el
. 2
I:z,[z,Ho]] =2H"+H 2" -2zH "z = %[z, pz] = —%
(¢ [aerT)ir) =20 (2020 arefr) =2
Inserting resolution of the identity: 1=Z‘n°><n°‘

(28 (oo )2 ) 2 o ) =
n m

%;(Es *E,°)<]0‘z‘n°><n0‘z‘1°>:zﬁl =1 sumrule for

PHY 742 - Lecture 11
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oscillator strength

22

Absorption of radiation in the case of photo emission
|£°)= Ry ()Y, (B)

2 2
(d 2d 0+, 22,

— —_— R =0
dr* rdr I r ] w0 (1)

From: http://dImf.nist.gov/33.2

" Figure 333.3: Fo(n.p), Geln.p)
with €= 0, 3y = 2. The tunine point is

$24 Fng) = e (e 1 Finze+2:8210), atp,(2.0)= 4.5
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Absorption of radiation in the case of photo emission
approximating final state as a plane wave (Born approximation)

|f°>z./\/e"k’r where k =+/(2mE | h*)

3 172
For initial state: ‘1” = ls> = {é} e
ar
R, ~ %”\(f“ A1) 5(-ho+ B2~ EY)

<f°‘1:1"1°>=<f0‘—eFrcosg‘1°>

Note: In a more accurate treatment, one should modify the static
electric field in order to account for electrodynamics ...
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For a H-like ion in a beam of photons with flux §, it is convenient to
define a cross section:

J dolol@) I do R, (o)
dQ S(w)
For a final state electron in
the k direction and a photon directed toward Z :
do(w) 32e’k’cos’ 0 Z° 1
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5 4
dQ e Ay (£ 2k 2 cos0)
a J? ¢

(Details: Merzbacher, Quantum Mechanics, third ed. (1998)
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