PHY 742 Quantum Mechanics Il
1-1:50 AM MWF Olin 103

Plan for Lecture 18

Path integral approach to quantum analysis
Ref: Chapter 11C of Professor Carlson’s text

. Some background/motivation

. Review of classical action

. Quantum action for a free particle

. Path integral vs Schrédinger formulation of QM
. Examples
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Topics for Quantum Mechanics Il
Single particle analysis
Single particle interacting with electromagnetic fields — EC Chap. 9
Scattering of a particle from a spherical potential — EC Chap. 14
More time independent perturbation methods — EC Chap. 12, 13

Single electron states of a multi-well potential = molecules and solids — EC Chap. 2,6

Time dependent perturbation methods — EC Chap. 15
Relativistic effects and the Dirac Equation — EC Chap. 16
Path integral formalism (Fey ) — EC Chap. 11.C

Multiple particle analysis
Quantization of the electromagnetic fields — EC Chap. 17
Photons and atoms — EC Chap. 18
Multi particle systems; Bose and Fermi particles — EC Chap. 10
Multi electron atoms and materials

Hartree-Fock approximation
Density functional approximation

[41][Fri 02/07/2020 [Chap. 15 _|Time-dependent perturbations @11 [02/14/2020
E‘Mon: 02/10/2020 |Chap. 15 |Time-dependent perturbations #12 [02/14/2020
3 [Wed: 02/12/2020 [Chap. 15 [Time- #13 02/17/2020
14 [Fri: 02/14/2020 [Chap. 16 |The Dirac equation [
(15 [Mon: 02/17/2020 |Chap. 16 [The Dirac equation #14 02/19/2020
116 [Wed: 02/19/2020 |Chap. 16 |[The Dirac equation #15 [02/21/2020
(7 |Fri: 02/21/2020 |Chap. 16 [The Dirac equation #16 02/24/2020
18 Mon: 02/24/2020 Chap. 11C  Path integral formalism
119 |Wed: 02/26/2020 |Chap. 11C |Path integral formalism
20 |Fri: 02/28/2020 Review
Take
Mon: 03/02/2020 |No class \APS March Meeting Home
Exam!
Take
\Wed: 03/04/2020 |No class  |APS March Meeting Home|
Exam!
Take
Fri: 03/06/2020 |No class  |APS March Meeting Home|
Exam!
| [Mon: 03/09/2020 |No class Spring Break
[Wed: 03/11/2020 |No class Spring Break
|Fri: 03/13/2020 [No class || Spring Break
21 ‘Mo 03/16/2020
v
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Dover reprinted version of classic text
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From: https://www.britannica.com/biography/Richard-Feynman

Richard Feynman, in full Richard Phillips Feynman, (born May 11,1918, New York, New York, U.S.—

died February 15,1988, Los Angeles, California), American theoretical physicist who was widely

regarded as the most brilliant, influential, and iconoclastic figure in his field in the post-World War

Ilera.

Undergraduate project — Feynman-Hellman theorem

AUGUST 15, 1939 PHYSICAL REVIEW VOLUME 56

Forces in Molecules

R. P. FEYNMAN
Massachusetts Institute of Technology, Cambridge, Massachusetis
(Received June 22, 1939)

Formulas have been developed to calculate the forces in a molecular system directly, rather
than indircctly through the agency of energy. This permits an independent calculation of the
slope of the curves of energy us. position of the nuclei, and may thus increase the accuracy, or
decrease the labor involved in the calculation of these curves. The force on a nucleus in an
atomic system is shown to be just the classical clectrostatic force that would be exerted on this
nucleus by other nuclei and by the electrons’ charge distribution. Qualitative implications of
this are discussed.

Ph. D. Thesis of R. P. Feynman —
“Principle of least action in Quantum Mechanics”, Princeton 1942.




REVIEWS OF

MODERN PHYSICS

Vorume 20, Numser 2 Aprri, 1948

Space-Time Approach to Non-Relativistic
Quantum Mechanics
R. P. FEYNMAN

Cornell University, Ithaca, New York

t way, It is, however,

Non-relativistic quantum mechanics is formulated here in a di
‘mathematically equi i lation. In quantum mechanics the probability
of an event which can happen in several different ways s the absolute square of
complex contributions, one from each alternative way. The probability that a particle wi
found to have a pa
of contributions, one from each path in the region. The contr
postulated to be an exponential whose (imaginary) phase is the classical action (in units of )
for the path i ion. The from all paths reaching ¥, ¢ from t i
wave function y(x, £). This is shown to satisfy Schroedinger’s equation. The

and operator algebra is discussed. Applic e indicated, in particular to el
coordinates of the field oscillators from the equations of quantum electrodynamics.
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PHYSICAL REVIEW VOLUME 97, NUMBER 3 FEBRUARY 1, 1955
Slow Electrons in a Polar Crystal

R. P. FEvsuan
California Institute of Technology, Pasadena, California
(Received October 19, 1954)

A variational principle is developed for the lowest energy of a system described by a path integral. It is
applied to the problem of the interaction of an electron with a polarizable lattice, as idealized by Frohlich.
The motion of the electron, after the phonons of the lattice field are climinated, is described as a path
integral. The variational method applied to this gives an energy for all values of the coupling constant.
It is at least as accurate as previously known results. The effective mass of the electron s also calculated,
but the accuracy here is difficult to judge.

PHYSICAL REVIEW B VOLUME 1, NUMBER 10 15 MAY 1970

Velocity Acquired by an Electron in a Finite Electric Field in a Polar Crystal

K. K. THORNBER*} AND RicHARD P. FEYNMAN
California Institute of Technology, Pasadena, California 91109
(Received 24 November 1969)

The expectation valuc of the steady-state velocity acquired by an clectron interacting with the longi-
tudinal, optical phonons of a polar crystal in a finite electric field is analyzed quantum mechanically for
arbitrary coupling strength, field strength, and temperature. The rate of loss of momentum by an clectron

Review of classical Now consider the Lagrangian defined to be :

Lagrangian mechanics: L {y(t),d—y},t U
dt
Kinetic Potential
energy energy

In our example:

dy 1 (dy :
L 0),—,t |=T-U=—m| =
e dt 2 \dt

Euler-Lagrange relations:  Hamilton's principle states:
oL d oL

Oy dt oy

- mgy

S= IL y(t),% ,t |dt is minimized for physical y(f)
t
4
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Feynman’s idea

Probability of quantum system to evolve from (¢,,y,) <> (tf, yf)

K@i, f)yee Y exp(iS(t,,t,)/h)

All paths i— [

.Q,y,-)

\\‘ —/\
\\ \}(t[/y[)
~
t

10

Digression — Recall the time evolution of a free quantum particle
(See Chapter 11 B of your textbook)

Time dependent Schrodinger equation: i w =H(x,0)¥(x,1)
t

Formal integral solution: ~ W¥(x,?) :J-dx'K(x, x,1)W¥(x',0)

where: (ih‘%—H(x,l)]K(x,x',t) =5(x—x")

2 2
For H(x,n=H(x)=—1-2
2m Ox”

m )" m(x—x')’
K(x,x't)= exp| ——————
2rmiht 2iht

11

Application of Feynman’s path integral idea to the free particle in one dimension

Use discretization to evaluate paths

(t,x) ¢
Z o .[dxldxzumdxlv !
X1 All paths i—> /
x Xz
X3
X4

(tf X f)

12
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Application of Feynman’s path integral -- continued

L=

Discretization over time: =€

Discretization over position; N —1 variable positions x,, x,,...x,_,
)

8G.f)= [ Lo . oydr

In this case, L(x,%,t) = %fcz

M=

. L X, =X,
We can approximate x ~—2—"1 where x,=x and x,=x
im
€

c 1
For any given choice of path: ~ S,(i, /) = exp [ﬁ (x,=x,, )zj
n=1
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Application of Feynman’s path integral -- continued

: N
For any given choice of path: ~ S,(i, f) ~ exp(%z@c” -X,, )zj
€

In order to perform path integral, need to consider all values of the interior

n=1

points x;, X,,...Xy_,

For example [ (x,) = -[ dx, exp(%((xl -x,) +(x-x, )Z)j

(24 _1/2 im - 2 here A= m
(24) eXp[zhs(z)(x~ %) | whered =

14

Application of Feynman’s path integral -- continued

Continuing next:  1,(x;) = I dx,1,(x,)exp (%()@ X, )ZJ
€

-0

= (3Az)’1’2 eXp[ZfiZ?}) (x,—x, )ZJ

Continuing last: 7, ,(xy)= I dxy_ 1y ,(xy_)exp (ﬂ(x,v — Xy )2 J

2he

—0

_ (NANfl )—1/2 eXp[thlN) (xy _XU)ZJ

15



Application of Feynman’s path integral -- continued

Iy Gry) = (VA )—1/3 eXp(zhl:(nN) (xy 7x0)2j

Note that ¢, —#,=Ne and x,—x,=x,—x, 2
K@ f)e Y expliS(.t)/ ) KG.)=C(Na"") " ex imlx, )
’ o ’ 2h(t, —1,)

All paths i f

where 4= —"
2rihe

Previous results for free particle kernel:

12 2 12 2
m m(x—x")’ m m(x,—x;)

K(o,x'\t)=| ——| exp| ————| K(x,x,t,~t)= €X]
(xt) [mm] p[ 2ift J Cioxpoty =) [Zm‘h(t,—t,)J p[ 2in(t,—t)

|
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Application of Feynman’s path integral — continued
Reconciling the constants --

Previous results for free particle kernel:

12
N m m(x,*xf)z
Koyt t')7{27rih(t/ —t,)J exl{ 2ih(tf—t,)]

Result of integration over N —1 intermediate points

~ im(x, —> :
K. f)=C(Na") " exp imx, ) where A= —"
2it, 1) 2rihe
=C=4" N2a .
General formula: K (i, f) :(%j i dxlidxz...ij;dxﬁ,] exp(iS(t,,1,) /1)

Note that the accuracy of the evaluation converges as N — .

17

Feynman’s path integral

N2 o ©

m H .
%) j dx, j dv,... | dx, exp(iS(,1,) /1)

Note that the accuracy of the evaluation converges as N — 0.

General formula: K (i, f) :(

In terms of the propagation kernel K(x,x',¢), the time evolution of the

wavefunction is given by W(x,) = jdx'K(x,x L)X, 0)

How is the path integral formulation related to the Schrédinger equation?

18



How is the path integral formulation related to the Schrédinger equation?

Consider a small increment of time: £, =0 ¢, =¢

W(x,6)= j dx'K(x,x",0)¥(x',0)
Lagrangian:  L(x,%,t) = %w&z -V (x)

Action: S(x,x',O,f):jL(u,u,t)dt where u(0)=x and u(e) =x"'
S(x,x',0. e)z—m[M]feV(mJ
€ 2

12
J exp(iS(x,x',0,€)/ h).

In this case: K(x,x'€)~ ( "
2rihe

412020 HY spr
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How is the path integral formulation related to the Schrédinger equation -- continued

1/2
K(x,x'e) ~ (2;’;6] exp(iS(x,x",0,¢)/ ).

¥(x,€) :jdx'K(x X\ e)W(x',0)

e 2 ie [ x'+x
(the] :[dr"P(x O)CXP[Zh( x'-x) jcxp[—;l/( 3 ])

Since € is small, we can expand all terms about e=0:

ie [ x'+x) ie ie [ x'+x i€
=V ==V exp| ——V rl-—=V
h(ZJh(X) Xp[h[Z)] n

Let u=x'-x

Y(x',0)~ ¥ (x,0)+u

oY (x, 0) o2 0*¥(x,0)
ox 2 ox*

20

How is the path integral formulation related to the Schrédinger equation -- continued
¥(x,c) :jdx'K(x,x',e)qf(x',O)
12 o a2
z{ m j J'ducxp im [1—71/()()) Y(x, 0)+uo‘i‘(x 0,1 70\{’()( T¥x0
2rihe ) * Zh ox 2 ox?

Integral values: -

12 o Loy 12 o 2
m imu
d =1 di =0
[27[ih5] J uexp( 2he J (2/nhfj ;‘. " uexp[ 2he ]

12 o 2\
[ ] Jdu u” exp imu” | _ ihe
27xihe 2he m

= P(x,e)= jdx'K(x,x',e)lP(x', 0)
ihe &* 0¥ (x,0)
m

+0(e)

(1771/():)}\*/(): e

21



How is the path integral formulation related to the Schrédinger equation -- continued
Y(x,€)= I dx'K(x,x",€)¥(x',0)

ihe 0" (x,0)
2m  ox°

z@—%Vuﬂqum+

Y(x,e)-¥(x,0) 9¥(x,0)
€ Ta
So that the path integral results are consistent with:
i oV (x,t) _ _LZ 0™ (x,1)
ot 2m o’

Note that:

+V(x)¥(x,t)
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