PHY 742 Quantum Mechanics Il
1-1:50 AM MWF Olin 103

Plan for Lecture 19

Path integral approach to quantum analysis
Ref: Chapter 11C of Professor Carlson’s text

1. Review of path integral formulation and example
for free particle
2. Role of classical trajectory

3. Examples
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Single electron states of a multi-well potential =» molecules and solids - EC Chap. 2,6

Topics for Quantum Mechanics Il

Single particle analysis
Single particle interacting with electromagnetic fields — EC Chap. 9
Scattering of a particle from a spherical potential — EC Chap. 14
More time independent perturbation methods — EC Chap. 12, 13

Time dependent perturbation methods — EC Chap. 15
Relativistic effects and the Dirac Equation — EC Chap. 16
Path integral formalism (Feynman) — EC Chap. 11.C

Multiple particle analysis
Quantization of the electromagnetic fields — EC Chap. 17
Photons and atoms — EC Chap. 18
Multi particle systems; Bose and Fermi particles — EC Chap. 10
Multi electron atoms and materials

Hartree-Fock approximation
Density functional approximation

(11 [Fri: 02/07/2020 |Chap. 15  |Time-dep #1102/14/2020
12 |Mon: 02/10/2020 |Chap. 15  |Time-dependent perturbations #12 02/14/2020
13 [Wed: 02/12/2020 [Chap. 15__[Time-dependent perturbations #13 [02/17/2020
14 |Fri: 02/14/2020 |Chap. 16  |The Dirac equation
{15 [Mon: 02/17/2020 Chap. 16 [The Dirac equation #14 (0211912020
16 Med' 02/19/2020 |Chap. 16 | The Dirac equation #15 02/21/2020
47 [Fri: 02/21/2020 |Chap. 16 [The Dirac equation #16 (0212412020
18 ‘Mon' 02/24/2020 |Chap. 11C |Path integral formalism
19 Wed: 02/26/2020 Chap. 11C |Path integral formalism
20 |Fri: 02/28/2020 Review
Take
Mon: 03/02/2020 |No class  |APS March Meeting Home
Exam’
Take
Wed: 03/04/2020 |No class  |APS March Mesting Home
Exam
Take
Fii: 03/06/2020 |Noclass |APS March Meeting Home
Exam!’
[ [Mon: 03/09/2020 [No class _[Spring Break
(Wed: 03/11/2020 |No class 'Spring Break
[Fri: 03/13/2020 |No class _[Spring Break
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Feynman’s idea

Probability of quantum system to evolve from (%,,x,) <> (t X )

K@, [y Y exp(iS(t,.t,)/h)

All paths i— f*
X
(t,x)
| N
L\
\ (ty,x;)
t ) t
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For free particle, V' (x)=0:
1/2
m(x, —X; )2

n €X]
27ih(t, —1,) P 2ih(t, -1,

K(x,x,t,—1)=

General formula for evaluating path integral using (N —1) intermediate points:

N2 o w0 w
KG, f) :(ﬁj j dx, j dxz...J dxy, exp(iS(t,,1,) 1 h)

Note that the accuracy of the evaluation converges as N — 0.

Relationship of path integral to time evolution of probability amplitude:

WCx,ot,) = [dvK Cry ot 5, 0) P ()
Consider a small increment of time: ¢, =0 ¢

W(x,e)= Idx'K(x,e,,x', 0)¥(x',0)

Lagrangian:  L(x,X,1) = % mi’ =V (x)

Action: S(x,e,x',O):IL(u,ﬂ,t)dt where u(0)=x' and u(e)=x
0
n? '
S(oex,0)~m (x=a) 751/(”4)
2 € 2

1/2
J exp(iS(x,€,x',0)/ h).

In this case: K (x,¢,x',0) = [
2rihe




Relationship of path integral to time evolution of probability amplitude:
Considering intermediate kernels
KOt 1) = [ Kt o) [ 6 K Gty Xas ) d5K (68 %,08)

172
j exp(iS(x,e,x',0)/ h)

In the limit e<1: K(x,€,x"0) z[
2rihe

where S(x,e,x',O)zlm M —eV(Xer]
2 € 2

Result consistent with path formulation given previously for same N intervals:

N2 o o

. m ¢ K )
KG,f)= [ﬂ] [ dxl:[dxz... jm dxy_, exp(iS(t,,1,)/ h)
In both cases, the accuracy of the evaluation converges as N — .
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Role of the “classical” trajectory

iy
. . . 1 .,
8@, f) = jL(x,x,t)dz L(x, 5,0 =~ mi? =V (x)
i
Classical trajectory:
N o
o5 =0 Euler-Lagrange equation: oL i% =
Ox dt ox

x,(t) is a solution to the Euler-Lagrange equation

H ure 1

Role of the “classical” trajectory -- continued

I
. . 1 .
Sli, f) = [ Ly, 0)dt L(x 1) =~ mi =V (x)
14
Example of a free particle --
L(x,)'r,t):%m,%z X =1x, +%(t7r,)

Lxgopt) =g m

(X/ ’Xl)z

J (constant)

5,01 = m




Role of the “classical” trajectory -- example of free particle -- continued
Applying Feynman’s idea

Probability of quantum system to evolve from (Z,,y,) <> (t "y f)
K@,y Y exp(iS(t.t,)/h)

All paths i—> f
For this case, suggest that K (i, f) = K, (i, ) oc exp(iS,, (i, f) / h)

x,-x)
For this case, S,,(i, f)= %mu

2 1,1,

2zih(t, -1, 2ih(t, —1,)

1/2
: . m m(x, —x,)"
Previously derived result:  K(x,,x,,t, —t,) = ) exp

ure 1

10

=K, f) —Cexp{imw

)
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Recap — For free particle, classical2 ath gives exact result!
. im (xf _xr')
K, (@, f)=Cexp| —-——"
2n t, -,

w2
m
ForC=| —F— K 1) = Kty neegrar s
[271’1'7!([,7&)] S f) Path Integs (@, f)

More generally, when can we expect:  K(i, f) = K, (i, ) = Cexp(iS,,(i, )/ 1) ?

Feynman showed that the classical trajectory approximation is valid for all Lagrangians
which depend on its variables up through quadratic order.

Form for Lagrangians for which K (i, /) =K, (i, f)
L(x,%;1) = A(t) + B(t)x + C(t)x + D(6)%* + E(t)x* + F (t)xx
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Importance of classical trajectory in analysis of path integrals

Consider free particle case in a small increment of time: €
Define a deviation from the classical trajectory u(t) = x,,(t) — x(t)

2 L2
Action: S= ”;L Kernel: K= Cexp[lmu ]
€

2he

)




Kernel for the one-dimensional harmonic oscillator
This is a case for the classical analysis: K (i, /) = K, (i, f) = Cexp(iS,, (i, ) / i)
L(x,%;1) = Lo _Lpgre

2 2

Classical trajectory:  x(¢) = Asin(wt + @)
with x; = Asin(et, +¢) and  x, = Asin(et, +¢) T=t,-t

L(x, (1) = mwzzAz (cosZ (ot + @) —sin’ (wt +¢)) = %ZAZCOS(XG)I‘JH/#))
me? 4 [ sin(2t, +8))-sin(20t,+9)) | modt | . )
S, = 3 [ d o == (sm(Z(a)t, +¢))—sm(2(wq +¢)))
:25;:7(&;7‘)((.{2 + x? )cos(wT) -2x.x, ) (Feynman magic)
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Kernel for the one-dimensional harmonic oscillator -- continued
K@, /)=K,(,f)=Cexp(iS,(, )/ h)

S, = ZS#(CZJT)(()C"Z +x7 )cos(a)T) -2xx, )

Determining constant C by recalling free particle result
1 >
. m m(x,—x,)
For free particle:  K(x,,x,,7)=| —— | exp| ———————
P ©oxp T) [Zm'hT] p[ 2inT

For harmonic oscillator:

1/2
) mo mo o, 5
K )= x; Jcos(wT)—2
@, T) (Zm'hsin(a}T)) eXp( Zihsin(zuT)\(x' +x; Jeos(@l) x‘x’)]
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Examples of using path integrals in research

PHYSICAL REVIEW VOLUME 97, NUMBER 3 FEBRUARY 1,

Slow Electrons in a Polar Crystal

R. P. FEYNMAN
California Institute of Technology, Pasadena, California
(Received October 19, 1954)

A variational principle is developed for the lowest energy of a system described by a path integral. Tt is
applied to the problem of the interaction of an electron with a polarizable lattice, as idealized by Frohlich.
‘The motion of the electron, after the phonons of the lattice field are eliminated, is described as a path
integral, The variational method applied to this gives an energy for all values of the coupling constant.
It is at least as accurate as previously known results. The effective mass of the electron is also calculated,
but the accuracy here is difficult to judge.

195
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Examples of using path integrals in research

We b

PHYSICAL REVIEW VOLUME 127. NUMBER 4 AUGUST 15, 1962

Mobility of Slow Electrons in a Polar Crystal

P. Fevsay
California Institute of Technology, Pasadena, California

3 .
Hugles Research Laboralories, Malibu, California

C. K. T
Prico Permi Institute for Nuclear Studies, University of Chicago, Chicago, Tilinois
Ao

P. M. Praraax
Bell Telephone Laboratories, Murray Hill, New Jersey
(Received March 26, 1962)

for
function at all requencies, tomperatures, and coupling strengths
of an electron coupled toa polar lattice (a system commonly calle

a polaron). The stasting point for the calculation is the quantum
mechanical expression for the expected current. The phonon co-
ordinates are eliminated from this expression by well-known field-
theory technigues. The resulting exact “Anﬁucncc functional” is
hen by adratic

tional” which, i is hoped, imitates the real puhmn Comesion

yed
ing the binding (and me) ey of he pnhmn I catlie caleala-
tions, However, the accuracy obtained using this approximation,
for the mq)ulm\cc calculation, is less satisfactory and its limita”
tions are discussed. Nevertheless, beginning at intermediate
Coupling srengih, the approsimate impelance produces a lovel
structure of increasing complexity and narrowing resonances as the
coupling strengthens. This suggests that further refinements may
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be e, Mthods fo fiding o better quadiati nfunce funce
terms are computed to account for the difference between the of
approximate impedance and the exact polaron impedance in a
manner closely analogous to Feynman’s treatment of the polaron
Sl energy. Tn fact, the analytl cvaluation of he cxpresion s ntreaing dieencen which acie from evening the onder of
the impedance obtained here is carried out using the approximate  taking limits of zero frequency and coupling.
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Examples of using path integrals in research

PHYSICAL REVIEW B VOLUME 1, NUMBER 10 15 MAY 1970

Velocity Acquired by an Electron in a Finite Electric Field in a Polar Crystal

K. K. THORNBER*} AND RICHARD P. FEYNMAN
California Institute of Technology, Pasadena, California 91109
(Received 24 November 1969)

The expectation value of the steady-state velocity acquired by an clectron interacting with the longi-
tudinal, optical phonons of a polar crystal in a finite electric field is analyzed quantum mechanically for
arbitrary coupling strength, field strength, and temperature, The rate of loss of momentum by an electron
drifting through the crystal in the applied field is expressed in a form in which the lattice coordinates (the
phonons) have been climinated exactly by path 1 methods. This ion is then evaluated by a
path-integral approach similar to that used to calculate the impedance of electrons in polar crystals. We
present numerical calculations of field (loss of energy per unit distance) versus velocity for three coupling
strengths using the Frohlich polaron model. In a single curve, all the expected phenomena appear, including
a threshold field for producing hot clectrons and a decreasing rate of energy loss with velocity for very fast
clectrons. Using only the experimentally measured values of the reststrahlen energy and the static and optical
dielectric constants, we find an energy loss of 0.025 eV/A for electrons near the threshold in AL, which
compares favorably with the experimental value of about 0.03 eV/A. We conclude that optical- phonon
scattering can indeed produce the high rate of energy loss that is present in tunnel-cathode structures.
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Model Hamiltonian
Phonons

H=p?/2m—F -xth3 hoyatax
k

O
04\“ & Hy-112 Z(Ckakemk L Ci¥a, e ik-x)
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More recent extensions --

Ab initio path integral molequlal_' dynamics: Basic ideas

Dominik Marx and Michele Parrinello . .
Max-Planck-Institut fiir Festkop hung, Heisenb 1, 70569 Stutigart, Germany

(Received 12 October 1995; accepted 6 December 1995)

The essential ideas underlying ab initio path integral molecular dynamics and its efficient numerical
impl ion are di: d. In this app the nuclei are treated as quantum particles within the
path integral formulation of q statistical hanics. The electronic degrees of freedom are
treated explicitly based on state-of-the-art electronic structure theory. This renders ab initio
simulations of quantum systems possible without recourse to model potentials. A combined
extended Lagrangian for both quantum nuclei and electrons defines a dynamical system and yields
molecular dynamics trajectories that can be analyzed to obtain quantum statistical expectation
values of time-independent operators. The methodology can be applied to a wide range of fields

dd problems in molecular and d d matter chemistry and physics. © 1996 American
Institute of Physics. [S0021-9606(96)03410-2]
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