PHY 742 Quantum Mechanics Il
1-1:50 AM MWEF via video link:
https://wakeforest-university.zoom.us/my/natalie.holzwarth

Extra notes for Lecture 23

Quantization of the Electromagnetic fields

Complete the reading of XVII. Quantizing Electromagnetic Fields.

Quantum Hamiltonian for the electromagnetic fields
Eigenstates of the electromagnetic Hamiltonian

Quantum expressions for the electromagnetic fields

Variance of measurable properties of the electromagnetic fields
Properties of a single mode coherent state
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Please finish reading Chapter 17 of Professor Carlson’s textbook.




[21]Mon: 03/23/2020 [Chap. 17 [Quantization of the Electromagnetic Field 17 ][03/25/2020

[22]Wed: 02/25/2020 [Chap. 17 JQuantization of the Electromagnetic Field #18 |03/27/2020
[23[Fri: 03/27/2020 [Chap. 17 |Quantization of the Electromagnetic Field #19 [03/30/2020

[24][Mon: 03/30/2020 | |
[25/[Wed: 04/01/2020 | |
[26]Fri: 04/03/2020 | |
[27[Mon: 04/06/2020 | |
[28][Wed: 04/08/2020 | |
[ |Fri: 04/10/2020 |Noclass |
[29][Mon: 04/13/2020 | |
[30]Wed: 04/15/2020 | |
|
|
|
|
|

Good Friday

[31][Fri: 04/17/2020 |
[32/[Mon: 04/20/2020 |
[33/[Wed: 04/22/2020 |
[34][Fri: 04/24/2020 |
[35/Mon: 04/27/2020 |
[36[Wed: 04/20/2020 |

Review
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The assigned homework for today’s lecture involves verifying some of the equations
discussed in this lecture.




Your questions???

Apologies for posting the lecture late last night and then not completing the
link correctly (It was corrected before 10 am this morning, but no excuse for

me.) | am trying to do better, but perhaps you could also post questions from
the reading materials?? Other suggestions?




Summary of previous results for the electromagnetic Hamiltonian

+

In terms of the operators a,_ and a,_

operators for wavevector k and polarization o.

With commutation relations: [aka, az.a.] =840, [aka,ak,a,]zo [ala,az.a.} =0

The eigenstates of the EM Field Hamiltonian (omitting diverging term) are integers n,

fixed _ il _
Hﬁeld nko‘> - Z(ha)k'ak'o”ak'a')| nko’> - hwknko' | nko‘>

k'c'

It is convenient to define the photon number operator

N, =a _a,,. suchthatN,_ |nka> =n,, |nka>
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The is a review of equations discussed in Lecture 22.




Properties of the creation and annihilation operators:

ako-‘nk0'> :\/E‘nka _1>
alto-‘nk0'> = \/nkO' +1‘nk0' +1>

Quantum mechanical form of vector potential --

A )= o~ iK-r—icyt b —(ikr—imt)
(l‘, ) kzg: 2Ve,m, S (a € T i€ )

Note: We are assuming that the polarization vector is real.
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Continuing review of previous results.




Quantum mechanical form of vector potential and corresponding fields --

g 2Veoa)k £ (0™ +al e )
Electric field:
E= —(Z—? = z%: ha)k g, (akaeik'r_m’kt - aiae_(ik'r_i“’kt))
Magnetic field:
B=VxA =B(r,f)=i) [—kxg,, ( a, ™ gt grkria) )

e \ 2Ve, o,
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From the quantum expression of the vector potential, we can also write expressions for the
electric and magnetic fields.




Embarassing/puzzling expectation values --

h ik-r—i —(ik-r—i
<nk'o"|A(r’t)|nk'0"> = Z msko‘ <nk'a'|(ak0'ek ! +al10'e ( wkt))|nk’o"> =0
ko 0
Electric field:
6A
Ta T (e |
Magnetic field:

> Z ha)k < |(aka€ik»r—iwkt _ al'io-ef(ikr—iaq‘t) )| nk'o—'> -0

B=VxA — <nk'6‘ |B > lz — kxe,_ <nk'o" |(ako-eik»r—iwkt _a:{' e—(ik~r—iwkl‘))|nklo_'> =0

o

ZeOk
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Consider evaluating the expectation values of these fields for a pure photon eigenstate.
Embarrassingly, they are 0.




In order to compare the classical treatment to the quantum approach we need to
calculate expectation values of the observables. In addition to mean value of an
observable, its statistical properties are also of interest, particularly the variance and
the standard deviation (its square root) which is defined in terms of the average of
the squared value of the observable and the average value itself:

Standard deviation: AV = \/ <V2> - ‘<V>‘2

The next few slides review the relationship of this variance to observables in
guantum mechanics which have non trivial commutation relationships and thus
have built in variance values.




Digression -- Commutator formalism in quantum mechanics

Definition:
Given two Hermitian operators 4 and B, their commutator is

[4,B]= AB — BA

Theorem:
Given Hermitian operators A4, B, C such that

[4,B]=iC,

it follows that ~ AAAB > %KC}‘
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In order to understand how the previous results can be true, we need to review the notion
of variance in quantum mechanics. In particular, the variance often is controlled by non-
trivial commutation relations. In this slide and the following, the relationship between
variance and commutators is reviewed.



Proof --

3/27/2020

Note that:
[4,B]" =(iC)

AB—BA) =BT A" — A'B' = —iC'
( )

T

=BA— AB = —iC

Calculation of the variance:
(8)" = (|(4 () ) Define [y} =|(4 - (4))v)
(4= (v |(4- (D)) vs)=|(B-(B))w)

Similarly,
(ABY =(y|(B~(B))'|w)
=((B-(B))v|(B~(B))w)
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Schwarz inequality:

A A D A

10



222222222

Define |1//A> = ‘(A —<A>)1,//> and

Schwarz inequality:

(wAIV/A><wBIV/B> K IV/B>\2
‘//A|WB

B B
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(Walvs) = I(4=(4))(B-(B))lv) ~(y|Flw)+lvIClw)

v} =[w 1] + v clv)f = 2l el

Putting it all together:

1

Walw ) wslys)=[walws) = lwicly)

1 2
= (a4)'(48) > 1[(c)
Therefore: [4,B]=iC implies AAABZ%KC>‘
Example: A=X, B=P

[X,P]=ih implies AXAPZ%
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Wrapping up the commutator discussion with the example of the uncertainty principle
applied to position and momentum.
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What does this have to do with quantum EM fields?
In fact, your textbook shows that although

(Mo |E(r,0) |y =0 and  (m..|B(r,?)|n,.)=0,

the variances of the ﬁelds are both infinite for a pure eigenstate --

(O (x)[0) =[E(r)]0)f" =

@, 0, ( £ ¢ :m) e (LK, o|Lk'.c")

ko k'c'
he ¢ &k

= =S k= [k,
2€0V§0)’( gOV; &, (2;;)3 « infinite

(17.19a)

.'kl—lk T

(B2 ()| 0)=[B(r)[0)| = QEVZZkaa )(K'xz,,. )(Lk.o|LK. &)

ko k'.o

<] ak (17.19b)

[k
25 VZ 271')3’« infinite
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7
25VZ_:_Zk:§j(

@, ko @, &Vc%

For the E and B fields themselves, the variance is not a result of non trivial commutation
relations. Here we calculate the variances for pure photon states.
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It is also possible to show that components of the E and B field have nontrivial
commutation relations, indicating that in general it is not possible to
simultaneously determine E and B at the same point in space to arbitrary
accuracy.

Effects of the phase of each mode.
In deriving these equations, we neglected the phase of each mode. A more
careful treatment of photon number and phase show that these also have
nontrivial commutation relations.

How is this quantum treatment of the electromagnetic fields consistent with the
classical picture?

1. There is no need for consistency.?

2. There should be consistency in certain ranges of the parameters.?

Summary of what we have learned so far. What do you think about how the quantum
equations could be related to the classical picture?
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© ane—‘a‘zu

Gauber's coherent state: ‘Ca> = ZT‘ n> based on a single mode n — n,
n=0 n

Electric field: (c, |E(r,t)|c,) =i

oot 5 —(iKer—iot
kr—iot e (i la)k))

2Ve,

1 . h ik-r—i * —(jkr—i
Magnetic field: (c, |B(r,t)|c,) =i /mkxska (ako-ek A _ g ol wkr))

Note that ¢ is a complex number which can be written in terms of a real amplitude and phase: £, and v :
{c,|E(r,1)|c,)=-2 /hw" g, E sin(k-r—ot+y) .
e, Here we are assuming that

<ca|B(r,t)|ca>:—2‘/2Vh kxeg, E, sin(k-r—a)kt+1//) o= Eoei"’
€9 Wy
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Here we introduce the single mode coherent state as a particular linear combination of
eigenstates of the electromagnetic Hamiltonian.
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Single mode coherent state continued
It can also be shown that

<ca HE(I‘,I)‘Z |ca> = 5&(4E§ sin’ (k -r—a)kt+1//)+1)

Ve,
Therefore
) > ho,
<ca|‘E(r,t)‘ |ca>—‘<ca|E(r’t)|ca>‘ :21/:0

This means that variance of the E field for the coherent state is independent of
the amplitude E,. Therefore, for large E, the variance is small in comparison.
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For these coherent states, we can evaluate the variance of the quantum mechanical
electric field.  You should verify these equations for your homework.
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Single mode coherent state continued

Now consider the expectation values of the number operator and its square:

Nko- = altaaka
(€0 [Ny [e, ) =[] (0 NNy, [¢,)= |af +[of
Square of the variance: <ca ‘NkJNkU ‘ca> —Kca ‘Nka ‘ca >‘2 = ‘af

Fractional uncertainty in the number of photons for the coherent state:

Jed NN ) ~Je N Je )

<Ca‘Nka‘ca> B ‘0{‘
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Again using the coherent states, we can evaluate the variance of the photon number.
What do you think is the significance of these results?




Interpretation of a single mode coherent state

© n —‘a‘ /2
‘ca> Z N ‘n> based on a single mode n — n,

n=0

The probability of finding » photons in this state is given by:

2 ‘0! 2 67‘0[‘2

Kn‘ca> i This 1s the form of a Poisson distribution
n!

for a mean value of ‘a‘z .

3/27/2020 PHY 742 -- Spring 2020 -- Lecture 23 18

Here we see that the coherent state is related to a Poisson distribution, important in
statistical analysis.
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More reading --

REVIEWS OF
MODERN PHYSICS

Vorume 37, NUMBER 2 ApriL 1965

3/27/2020

Coherence Properties of Optical Fields”

L. MANDEL, E. WOLIF

Department of Physics and Astronomy, University of Rochester, Rachester, New Vork

This article presents a review of coherence properties of electromagnetic fields and their measurements, with special
emphasis on the optical region of the spectrum. Analyses based on both the classical and quantum theories are described.
After a brief historical introduction, the elementary concepts which are frequently employed in the discussion of inter-
ference phenomena are summarized. The measure of second-order coherence is then introduced in connection with the
analysis of a simple interference experiment and some of the more important second-order coherence effects are studied.
Their uses in stellar interferometry and interference spectroscopy are described. Analysis of partial polarization from
the standpoint of correlation theory is also outlined, The general statistical description of the field is discussed in some
detail. The recently discovered universal “diagonal” representation of the density operator for free fields is also con-
sidered and it is shown how, with the help of the associated generalized phase-space distribution function, the quantum-
mechanical correlation functions may be expressed in the same form as the classical ones. The sections which follow
dealwith the statistical properties of thermal and nonthermal light, and with the temporal and spatial coherence of black-
body radiation, Later sections, dealing with fourth- and higher-order coherence effects include a discussion of the
photoelectric detection process. Among the fourth-order effects described in detail are bunching phenomena, the Hanbury
Brown-Twiss effect and its application to astronomy. The article concludes with a discussion of various transient super-
position effects, such as light beats and interference fringes produced by independent light beams.
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page 231

electromagnetic fields.

There are many more interesting aspects of the statistical properties of quantum
Here is an example of an interesting review article.
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