PHY 742 Quantum Mechanics Il
1-1:50 AM MWEF via video link:
https://wakeforest-university.zoom.us/my/natalie.holzwarth

Extra notes for Lecture 25

Quantum mechanics of multiple particle systems

Read Professor Carlson’s textbook: Chapter X. Multiple particles

1. Non-interacting particles
a. Distinguishable, Fermi, Bose

b. Second quantized formalisms
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In this lecture, we will begin our consideration of multiple particle systems which is
discussed in Chapter 10 of your textbook. First we consider the ideal situation that the
multiple particles do not interact with eachother.




Topics for Quantum Mechanics Il
Single particle analysis

Single particle interacting with electromagnetic fields — EC Chap. 9

Scattering of a particle from a spherical potential — EC Chap. 14

More time independent perturbation methods — EC Chap. 12, 13

Single electron states of a multi-well potential = molecules and solids — EC Chap. 2,6
Time dependent perturbation methods — EC Chap. 15

Relativistic effects and the Dirac Equation — EC Chap. 16

Path integral formalism (Feynman) — EC Chap. 11.C

Multiple particle analysis
Quantization of the electromagnetic fields — EC Chap. 17
Photons and atoms — EC Chap. 18
Multi particle systems; Bose and Fermi particles — EC Chap. 10
Multi electron atoms and materials
Hartree-Fock approximation
Density functional approximation

Here is the course outline that we have been following.




[21][Mon: 03/23/2020 [Chap. 17 [Quantization of the Electromagnetic Field [#17 [03/25/2020

[22][Wed: 03/25/2020 [Chap. 17 |Quantization of the Electromagnetic Field k18 [03/27/2020
[23][Fri: 03/27/2020 [Chap. 17 [Quantization of the Electromagnetic Field 19 [03/30/2020
[24/[Mon: 03/30/2020 [Chap. 18 [Photons and atoms

[25/Wed: 04/01/2020 [Chap. 10 [Multiparticle systems #20 |[04/03/2020

[26 [Fri: 04/03/2020 || \
[27 [Mon: 04/06/2020 | \
[28[Wed: 04/08/2020 | \
[ |[Fri: 04/10/2020 |Noclass [Good Friday
[29/[Mon: 04/13/2020 | \
[30][Wed: 04/15/2020 \
[31][Fri: 04/17/2020 | \
[32/[Mon: 04/20/2020 | \
[33[Wed: 04/22/2020 | \

|

\

[34][Fri: 04/24/2020 |
[35/[Mon: 04/27/2020 ||
[36[Wed: 04/29/2020 |

Review
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Homework #20 asks you to do a problem from the end of Chapter 10 of Professor Carlson’s
textbook.




Your questions:

From Trevor
Slide 8 asks what would happen if phia and phib have exactly the same shape.

Looking at the equation on that slide, the total wavefunction would be zero. Is this
a demonstration of the pauli exclusion principle, since in essence it's saying that
two fermi particles can't be in the same state?

From Surya
1. We can express wave function for n-fermions easily using Slater determinant.

Can we write wave function for 3-Bosons just like we do for two bosons with two

states in slide 137
2. lsit possible to explain non-interacting bose/fermi particle using DFT?
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Some answers —

Question: Slide 8 asks what would happen if phia and phib have exactly the same shape.
Looking at the equation on that slide, the total wavefunction would be zero. Is this a
demonstration of the Pauli exclusion principle, since in essence it's saying that two fermi
particles can't be in the same state?

Example for two Fermi particles:
1
y(r,r,)= ﬁ((ﬁa (r)e,(r,) —@,(r,)e,(r ))

In this case, if ¢, (r) = ¢, (r), theny (r,,r,) = 0. This result is consistent
with the Pauli exclusion principle that two identical Fermi particles cannot
simultaneous occupy the same state.
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Question: We can express wave function for n-fermions easily using Slater determinant.
Can we write wave function for 3-Bosons just like we do for two bosons with two states
in slide 13?

Example for two Bose particles:

1
w(r,r,)= ﬁ(wa (r)e,(r,) +,(r,)e, (rl))
For three Bose particles:

o,(r) ¢, r) o,/ (r)
l//(l'l,l'2,l'3)=— §0b(l‘1) §0b(l'2) ¢b(l'3)
3!
\/_ (Dc (rl) (Dc (r2) ¢c (r3 ) +« Determinant but

without minus signs.
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Question: s it possible to explain non-interacting Bose/Fermi particle using
DFT?

Comment: DFT (density functional theory) is called a “mean field” theory which
refers to the fact that the “mean values” of interactions are used self-consistently
in the evaluations. This leads to an effective single particle formulation of the
system. If the system is non-interacting, then the system can be treated exactly
as independent particles. However in nature, there are very few cases of non-
interacting particles.
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Slides from original lecture --

04/01/2020
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Quantum mechanical treatment of multiparticle systems

z

| @ 5 ®

For a non-interacting system:
H(r,r,,.ry)=H(@)+H(r,)+..H()
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This diagram illustrates a general system to be considered where N particles are described
by N different coordinates. For the moment, we will be considering systems which do not
vary in time. This can be generalized later.




Quantum mechanical treatment of multiparticle systems

For a non-interacting system:
H(r,r,,..r,)=H@)+H(r,)+...H(ry)

Energy eigenstates:
H(r,r,,.r)y(r,r,.r,) = Ey(,r,,.1r,)
Simplification for separable Hamiltonian
For: H(r)p,(r)=¢,0,(r)
H(r,)p,(r,) = £,p,(r,)
Solution to the many particle problem
y(r,r,..ry) =0, (r)e,(r,)..o. (r,) € Turns out to not be

enerally correct.
E=¢ +¢ +..¢, & v
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In order to describe our system we need to account for the coordinates of our N particles in
the probability amplitude psi. Since the particles do not interact with each other, we can
analyze the individual particle states by solving each single particle Schrodinger equation in
terms of their probability amplitudes phi. The many particle probability amplitude is then
simply the product of the single particle functions and the eigenstate energy is the sum of
the single particle energies.
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Quantum mechanical treatment of multiparticle systems —
non-interacting particles

The treatment given on previous slides, assumes that the particles are
distinguishable.

A more sophisticated treatment is needed for indistinguishable particles.
Two types of indistinguishable particles:

Fermi particles: y(r,,r,,..r,..x,..xry) = =@ (X, 1, X, XX, )

Bose particles:  w(r,r,,.1,..x..Xy) =+ (1,6, X X 1y)

04/01/2020 PHY 742 -- Spring 2020 -- Lecture 25 11

However the product of single particle states is missing some of the know properties of
indistinguishable multiparticle systems. In particular, it is known that there are two types
of particles, named Fermi particles and Bose particles which behave differently. The
difference between the two is represented in terms of how their probability amplitudes are
affected by the exchange of two particles in the function.
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Consider two particles in a one-dimension labeled with coordinates x,
and x,. Identify each of them as Fermi, Bose, or neither in terms of the
functional forms.

—alx—x,|

1. w(x,x,)=e
2. y(x,x,) = (’xl _xz)e

—05|x1 —x2|

—alx—x,|

3. w(x,x,)=xe
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Quantum mechanical treatment of multiparticle systems —
non-interacting Fermi particles

Fermi particles: w(r,,r,,.X,..x,..xy) = =y/(1, 1, . X,..X..Iy)

Example for two particles:

H(r,r,)y (r,r,) = Ey(r,1,)

For: H(r)e,(r)=¢&,0,(r)
H(r,)e,(r,) = £,0,(r,)

p(r.1,) =%(%(rl)@,(rz)—(pa(r»(pb(rl))

E=¢ +¢
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Returning to the non-interacting particles. By construction, this form of psi satisfies the

Fermi particle exchange equation. What do you think happens of the two functions phia
and phib have exactly the same shape?



Quantum mechanical treatment of multiparticle systems —
non-interacting Fermi particles

Fermi particles: w(r,,r,,.X,..x,..xy) = =y/(1, 1, . X,..X..Iy)

1

Example for N particles using Slater determinant:

2.r) ¢, @) - @,y

1 ¢b(r1) gob(rz) ¢b(r3) qob(rjv)

y(r,r,...ry) :W e.(r) @) @) - @(ry)
p.r) @.(r) @.(r) - @.(ry)

E=¢ +¢& +..¢€
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The antisymmetrization of single particle states can be conveniently be written in terms of
a so-called Slater determinant.
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Quantum mechanical treatment of multiparticle systems —
non-interacting Bose particles

Bose particles: y/(r,,r,,.1,..r;..0y) =W/ (1, 1,,.X;..X,..X )

Example for two particles:

H(r,r)y(n,n,) = Ey(r,r,)

For: H(r)p,(r)=¢,0,(r)
H(r,)p,(r,) = &,0,(r,)

w(r.1,) =%((pa(rlm(rmcoa(rz)co,,(rl))

E=¢ +¢
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Returning to the non-interacting particles. By construction, this form of psi satisfies the
Bose particle exchange equation. What do you think happens of the two functions phia
and phib have exactly the same shape?
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Quantum mechanical treatment of multiparticle systems —
non-interacting particles; multiplicity of eigenstates

Consider a system with two independent particle states
and two particles:

 — Eb H(r1)¢)a (rl) =&,9, (rl)
—_— ¢ H(r,)p,(r,) = &,¢,(r,)

a

Possible states for distinguishable particles:
y,(n.5)=0,)e,,) E =¢,+¢,
v,(hn)=9,@)e,M)  E,=¢ +s,

Vi (.5 =0,0)e,,)  Ey =2s,

v, () =0,0)e,(,) E, =2
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Here we can find 4 different 2-particle states for the distinguishable particle case.
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Quantum mechanical treatment of multiparticle systems —
non-interacting particles; multiplicity of eigenstates

Consider a system with two independent particle states
and two particles:

 — Eb H(r1)¢)a (rl) =&,9, (rl)
—_— ¢ H(r,)p,(r,) = &,¢,(r,)

a

Possible states for Fermi particles:

l//[(l’l,l'z) = L(¢a(r1)¢b(r2) - ¢a(l‘2)¢b(l‘l)) El =¢&,1¢,
V2
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Is there really only one possibility here?
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Quantum mechanical treatment of multiparticle systems —
non-interacting particles; multiplicity of eigenstates

Consider a system with two independent particle states
and two particles:

 — Eb H(r1)¢)a (rl) =&,9, (rl)
—_— ¢ H(r,)p,(r,) = &,¢,(r,)

a

Possible states for Bose particles:
1
v, (r,r,) = E(@a(n)@b(rz) + @, (r2)¢b(r1)) E =¢,+¢,

v, (r,n)=¢,()e,(r,) E,=2¢,
V(L) =9,0)e,(x,) E,=2¢
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How could it be that there are more possibilities here?
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Treating multiparticle systems using “second” quantization
formalism

Consider a non-interacting system:
H(r,r,.r,)=H(@)+H(,)+..H(,)
For a system of non-interacting identical particles,

the single particle Hamiltonians H (r,) are also identical.
Suppose we have a complete basis set that describes

each single-particle state;
DO(r,t) = Z C.p, (r)e

These basis functions can be used to represent

—ig, t/h

the many particle wavefunctions.
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It turns out that the creation and annihilation operators can be used to help us with a
convenient formalism to take the particle symmetry into account. We need to start with a
complete set of single particle basis functions.
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Operators for Bose system

Creation operator: b, ‘O> = ‘1a> b! ‘na> = m‘na + 1a>

Destruction operator: b, ‘1a> = ‘0a> b, ‘na> = \/a ‘ n,— 1a>
Commutator notation

blb} =bh! [ b].b) |=0

b,b, =bb, | b,by |=0

[ba’b/t’] = Oup
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From our experience with creation and annihilation operators we can deduce the following
relationships .
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Example for Fermi particles

Slater determinant for N particles:

2.r) ¢,) @,0) - @,(ry)
. 2®) 9,m) @) - @)
\w(rl,rz----rm:ﬁcocfn) P.r) g.(6) - ry)

¢z (rl ) ¢z (r2 ) ¢z (rS) U qu (rN )
Second quantization representation:

|1,//(r1,r2....rN)> =

n,mn nz>

a c

For Fermi particles, the occupation eigenvalues can be
n,=0 or1

04/01/2020 PHY 742 -- Spring 2020 -- Lecture 25 21

Now, consider the case for Fermi particles. Why are the occupation eigenvalues restricted
as stated for Fermi particles?
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Operators for Fermi system

Creation operator: f, ‘0> = ‘1a>
Destruction operator: f, ‘1a> = ‘Oa>

Anti commutator notation
Sl ==13 il fhp=0
fofy =1t {fusfs}=0
{f wr /) /fT} =0
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We will show next time, that we construct creation and annihilation operators for Fermi
particles as well.  These ideas will be elaborated next time.




