PHY 742 Quantum Mechanics Il
1-1:50 AM MWEF via video link:
https://wakeforest-university.zoom.us/my/natalie.holzwarth

Plan for Lecture 26

Quantum mechanics of multiple particle systems

Continue reading Professor Carlson’s textbook: Chapter X. Multiple
particles (Sec. A&B)

1. Non-interacting particles
a. Second quantized formalism for Bose particles

b. Second quantized formalism for Fermi particles

04/03/2020 PHY 742 -- Spring 2020 -- Lecture 26 1

In this lecture, we will continue our consideration of multiple particle systems which is
discussed in Chapter 10 of your textbook. We continue to consider the ideal situation in
which the multiple particles do not interact with each other.




Topics for Quantum Mechanics Il
Single particle analysis

Single particle interacting with electromagnetic fields — EC Chap. 9

Scattering of a particle from a spherical potential — EC Chap. 14

More time independent perturbation methods — EC Chap. 12, 13

Single electron states of a multi-well potential = molecules and solids — EC Chap. 2,6
Time dependent perturbation methods — EC Chap. 15

Relativistic effects and the Dirac Equation — EC Chap. 16

Path integral formalism (Feynman) — EC Chap. 11.C

Multiple particle analysis
Quantization of the electromagnetic fields — EC Chap. 17
Photons and atoms — EC Chap. 18
Multi particle systems; Bose and Fermi particles — EC Chap. 10
Multi electron atoms and materials
Hartree-Fock approximation
Density functional approximation

Here is the course outline that we have been following.




[21][Mon: 03/23/2020 [Chap. 17 [Quantization of the Electromagnetic Field #17 [03/25/2020

[22][Wed: 03/25/2020 [Chap. 17 [Quantization of the Electromagnetic Field 18  [03/27/2020
[23][Fri: 03/27/2020 [Chap. 17 [Quantization of the Electromagnetic Field #19 03/30/2020
[24][Mon: 03/30/2020 [Chap. 18 [Photons and atoms | \

[25[Wed: 04/01/2020 [Chap. 10 [Multiparticle systems {20 |04/03/2020
IE\Fri: 04/03/2020 [Chap. 10  [Multiparticle systems #21 [04/06/2020
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Review
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Homework #21 involves examining the derivations and results of Slide 12 of this lecture.




Quantum mechanical treatment of multiparticle systems

z

| @ 5 ®

For a non-interacting system:
H(x,x,,..x,)=h(r)+h(,)+..A(,)
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This diagram illustrates a general system to be considered where N particles are described
by N different coordinates. The lower case “h” is used to emphasize a single particle
Hamiltonian.




Quantum mechanical treatment of multiparticle systems
For a non-interacting system:
H(x,rx,,..r,)=h(r)+h(r,)+..4(,)

Energy eigenstates:

H(r,r,,.r)y(r,r,,.r,) = Ey(r,r,,.r,)

Simplification for separable Hamiltonian
For: h(r)p,(r)=¢,0,r)
h(r,)p,(r,) = £,0,(r,)
Solution to the many particle problem
y(1,1,,..1y) = @, (1)@, (r,)..0.(ry) Does not take into account

E=¢,+& +..€ particle symmetry.
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Here we summarize the equations from Lecture 25. The non-interacting total Hamiltonian
can be written as a sum of single particle Hamiltonian terms.




Refinement of the results for treatment of distinguishable or indistinguishable particles

For distinguishable particles: F=permutation operator
y(r,r,,.ry)=0,(r)e,(r,)..0.(r,) Z(@,(r)p,(1,)) = @, (1,)p,(r)

Two types of indistinguishable particles:

1

Fermi particles: . (1, r,,..1,..X,..0y ) = =W (1,5, X0y )

=Y (r,,. 0., ry) = ﬁ;(—l)ﬂ’fl’(% )9, (1)@, (r)..0.(r,))

Bose particles:  w,(r,,L,,..1,..X,..Xy ) =+ (1,1, 0, X Xy )

1

1
=y, ..y = ﬁ;fp(@z(rl)(ob(r2)¢c(r3)---¢z(r1v))
Energy eigenstates: H (r,,r,,..r, )y (r,r,,..r,) = Ey(r,r,,.r,)

E=¢ +¢g +..¢,
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Here we summarize the particle permutation properties of Fermi and Bose particles.
Using the permutation operator.




Treating multiparticle systems using “second” quantization formalism
Consider a non-interacting system:
H(x,x,,..xy)=h(r)+h(x,) +.. .A(,)

For a system of non-interacting identical particles,

the single particle Hamiltonians /(r,) are also identical.
Eigenstates of the single particle Hamiltonian:
h(r)e,(r)=¢,0,(r)

h(r)p, (r) = £,0,(r)

h(r)p.(r) = £.¢.(r)
We now assume that the single particle eigenstates {goa (r)}

span the function space available to each particle.
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Defining the basis eigenstates from the single particle Hamiltonian.




Treating multiparticle systems using “second” quantization formalism -- continued
h(rl) = z‘ ¢a (r] )>ga <¢a (rl )‘
(04

<(pa (1'1)‘1//(1’1,1’2,...1’]\,)> =n,
=number of times basis function ¢, (r,)
appears in the product representation
Second quantization representation:
|l//(r1,r2....rN)> =
H(r,r,..r,)= ZgaNa

nanbnc....nz>

where the number operator acts as follows:
Na

04/03/2020 PHY 742 -- Spring 2020 -- Lecture 26

nanbnc....nz> =n, nanbnc..na..nz>

Introducing the notion of “second” quantization.




In general, the number operator can be expressed in terms of a product of two operators.
For the case of Bose particles, these operators are very similar to the raising and lowering
operators of the harmonic oscillator.

N, =b,D,
Bose particle commutation relations:
[b,,051=b,b, —Dsb, =0

[b},b,1=0
[b,,0,1= 3,

(27
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Considering first the case of Bose particles.




Second quantization for Bose particles, continued

bib,|n)=n,|n,)
ba‘na>:\/z‘na _1>
b;‘na>=«/na +1‘na +1>

For example: b’ ‘0a> ‘la>
bill)=V2[2,)
(8L [0,) =lln,)

RGICINCI
RCRCED
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To represent 3 states: ‘n n2n3

For Bose particles, we can use the same relationships found for harmonic oscillators and
for the quantized electromagnetic fields.

10



Second quantization for Fermi particles

Na:fojfa

Fermi particle anticommutation relations:

st =Ly + [3f, =0
{15} =0
{faf/j}:%ﬂ
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Now consider the case for Fermi particles.

11



Second quantized creation and annhilation Fermi operators

fifn)=n,|n,)
These results follow from the
fa ‘na> = \/Z‘l_ ”a> anti commutator relations of

fTa ‘”a> _ M‘l _ na> the operators.

Non-trivial operations:
fal0,)=0 f1.)=]0.)
f10)=]1) fI1,)=0

=n,=0orl

nmn )= (1) ()" ()" lo)
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To represent 3 states:

These results follow from the anti-commutation relations. Your homework for this lecture
is to verify these relationships.




Note that the symmetry of the wavefunction is built into the formalism for Bose particles
410) =Bt ]0
Note that the antisymmetry of the wavefunction is built into the formalism for Fermi particles

fa”rbe‘O>:_befj 0>

In this case, the second quantized forms for the non-interacting system can be written:

H(r,r,...xy) = Y &,blb, for Bose particles

H(r,r,.r,)= Zga ff.  for Fermi particles
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What do you think are the advantages/disadvantages of this second quantized formalism?
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04/03/2020

More general treatment of multiparticle system

N
H(r,5,,..x) = > h@r)+V(r.r,,.1ry)
=l interparticle

interaction

N N
Often: V' (r,,r,,..xy)= >, v, —r,)
i=1 (> ) j=1
In this case, the second quantized forms can be written
H(r,r,..x) = > e,blb, + > v, .blbib b, for Bose particles
a

afyd

H(, by ) 2 Y 6, [T+ D Vo fa faf, fs for Fermi particles

afyo

Here v, s denotes matrix elements such as

Vo = |1 [dr; 0, ()0, (0)V(x, 1), (1), (1)
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Next time, we will start to think about what happens when the particles interact.

14



