PHY 742 Quantum Mechanics II 1-1:50 AM MWF Olin 103

Plan for Lecture 6

- 1. Continue reading Chapter 14 Analysis of scattering phenomena a. Summary of phase shift analysis and examples
 - b. Approximate treatments of scattering Born approximation

PHY 742 -- Lecture 6

1

1/27/2020

		MWF 1-1:5	0 PM OPL 103 http://www.wfu.edu/~natalie/s20phy74	2/					
	Inchanged	ALC: NO							
	Instruct	or: Natalie	Holzwarth Phone:758-5510 Office:300 OPL e-mail:natalie	e@wfu.ed	<u>u</u>				
_									
		C	Course schedule for Spring 2020						
(Preliminary schedule subject to frequent adjustment.)									
-	Lecture date	Reading	Topic	HW	Due date				
	Ecoluic dute		10010		Duc uute				
1	Mon: 01/13/2020	Chap. 9	Quantum mechanics of electromagnetic forces	#1	01/22/202				
1	Mon: 01/13/2020 Wed: 01/15/2020	Chap. 9 Chap. 9	Quantum mechanics of electromagnetic forces Quantum mechanics of particle in electrostatic field	<u>#1</u> #2	01/22/202				
1 2 3	Mon: 01/13/2020 Wed: 01/15/2020 Fri: 01/17/2020	Chap. 9 Chap. 9 Chap. 9	Quantum mechanics of electromagnetic forces Quantum mechanics of particle in electrostatic field Quantum mechanics of particle in magnetostatic field	#1 #2 #3	01/22/202 01/24/202 01/27/202				
1 2 3	Mon: 01/13/2020 Wed: 01/15/2020 Fri: 01/17/2020 Mon: 01/20/2020	Chap. 9 Chap. 9 Chap. 9 No class	Quantum mechanics of electromagnetic forces Quantum mechanics of particle in electrostatic field Quantum mechanics of particle in magnetostatic field Martin Luther King Holiday	#1 #2 #3	01/22/202 01/24/202 01/27/202				
1 2 3	Mon: 01/13/2020 Wed: 01/15/2020 Fri: 01/17/2020 Mon: 01/20/2020 Wed: 01/22/2020	Chap. 9 Chap. 9 Chap. 9 No class Chap. 14	Quantum mechanics of electromagnetic forces Quantum mechanics of particle in electrostatic field Quantum mechanics of particle in magnetostatic field Martin Luther King Holiday Scattering theory	#1 #2 #3 #4	01/22/202 01/24/202 01/27/202 01/29/202				
1 2 3 4 5	Mon: 01/13/2020 Wed: 01/15/2020 Fri: 01/17/2020 Mon: 01/20/2020 Wed: 01/22/2020 Fri: 01/22/2020	Chap. 9 Chap. 9 Chap. 9 No class Chap. 14 Chap. 14	Quantum mechanics of electromagnetic forces Quantum mechanics of particle in electrostatic field Quantum mechanics of particle in magnetostatic field Martin Luther King Holiday Scattering theory Scattering theory	#1 #2 #3 #4 #5	01/22/202 01/24/202 01/27/202 01/29/202 01/29/202 01/31/202				
1 2 3 4 5 6	Mon: 01/13/2020 Wed: 01/15/2020 Fri: 01/17/2020 Mon: 01/20/2020 Wed: 01/22/2020 Fri: 01/24/2020 Mon: 01/27/2020	Chap. 9 Chap. 9 Chap. 9 No class Chap. 14 Chap. 14 Chap. 14	Quantum mechanics of electromagnetic forces Quantum mechanics of particle in electrostatic field Quantum mechanics of particle in magnetostatic field Martin Luther King Holiday Scattering theory Scattering theory	#1 #2 #3 #4 #5 #6	01/22/202 01/24/202 01/27/202 01/29/202 01/29/202 01/31/202 02/03/202				
1 2 3 4 5 6 7	Mon: 01/13/2020 Wed: 01/15/2020 Fri: 01/15/2020 Mon: 01/20/2020 Wed: 01/22/2020 Fri: 01/24/2020 Mon: 01/27/2020 Wed: 01/29/2020	Chap. 9 Chap. 9 Chap. 9 No class Chap. 14 Chap. 14 Chap. 14	Quantum mechanics of electromagnetic forces Quantum mechanics of particle in electrostatic field Quantum mechanics of particle in magnetostatic field Martin Luther King Holiday Scattering theory Scattering theory Scattering theory	#1 #2 #3 #4 #5 #6	01/22/202 01/24/202 01/27/202 01/29/202 01/29/202 01/31/202				

Slight simplification in functions --
Define slightly more convenient radial function:
$$R_{El}(r) \equiv \frac{P_{El}(r)}{r}$$

Partial wave differential equation for $P_{El}(r)$:
 $\left(-\frac{\hbar^2}{2m}\left(\frac{d^2}{dr^2} - \frac{l(l+1)}{r^2}\right) + V(r) - E\right)P_{El}(r) = 0$
Similarly, we can define the scaled spherical Bessel and Neumann functions:
 $jj_l(x) = xj_l(x)$ and $yy_l(x) = xy_l(x)$
Continuity conditions at $r = D$: $P_{El}(D) = \mathcal{N}(\cos \delta_l, jj_l(kD) - \sin \delta_l, yy_l(kD))$
 $\frac{dP_{El}(D)}{dr} = \mathcal{N}\left(\cos \delta_l \frac{djj_l(kD)}{dr} - \sin \delta_l \frac{dyy_l(kD)}{dr}\right)$
 $\tan \delta_l(E) = \frac{LL_l(E)jj_l(kD) - kjj_l(kD)}{LL_l(E)yy_l(kD) - kyy_l(kD)}$ where $\frac{d \ln(P_{El}(r))}{dr} \bigg|_{r=D} \equiv LL_l(E)$

Example -- $V(r) = \begin{cases} V_0 & \text{for } 0 \le r \le a \\ 0 & \text{for } r \ge a \end{cases}$ $V(r) = \begin{cases} V_0 & \text{for } 0 \le r \le a \\ 0 & \text{for } r \ge a \end{cases}$ For the case that $E < V_0$, define $\kappa = \sqrt{\frac{2m(V_0 - E)}{\hbar^2}}$ and $k = \sqrt{\frac{2mE}{\hbar^2}}$

Example -- continued

$$\tan \delta_0(E) = \frac{\sin(ka) / \lambda_0 - k\cos(ka)}{-\cos(ka) / \lambda_0 + k\sin(ka)} \qquad \lambda_0 = \frac{\sinh \kappa a}{\kappa \cosh \kappa a}$$

For $ka \ll 1$, $\tan \delta_0(E) \approx \delta_0(E) \approx k \frac{1 - a / \lambda_0}{1 / \lambda_0} = -k(a - \lambda_0)$

Note that for infinite potential well, $\lambda_0 \rightarrow 0$ as derived previously. More generally, for $ka \ll 1$ $\sigma \approx 4\pi (a - \lambda_0)^2$

Even more generally, this approach can be used to determine the exact cross section for this model from scattering amplitude: $f(\hat{\mathbf{k}}, \hat{\mathbf{r}}) = \frac{4\pi}{k} \sum_{lm} e^{i\delta_l(E)} \sin(\delta_l(E)) Y_{lm}^*(\hat{\mathbf{k}}) Y_{lm}(\hat{\mathbf{r}})$

10

PHY 742 -- Lecture 6

10

1/27/2020

Approximate treatment of scattering – Born approximation
In this treatment, we use the notions of perturbation theory

$$H = H^0 + H^1$$

 $H^0 = -\frac{\hbar^2}{2m} \nabla^2$
 $H^1 = V(r)$
In this case, the relevant eigenstates of H^0 are plane waves.
 $H^0 | \Psi_E^0 \rangle = E | \Psi_E^0 \rangle \qquad | \Psi_E^0 \rangle = e^{i\mathbf{k}\cdot\mathbf{r}} \text{ where } k = \sqrt{\frac{2mE}{\hbar^2}}$

11

Equation for first order wavefunction:

$$(H^{0}(\mathbf{r}) - E) |\Psi^{1}\rangle = -V(r) |\Psi^{0}\rangle$$
Note that for

$$(-\frac{\hbar^{2}}{2m} \nabla^{2} - E) G(\mathbf{r}, \mathbf{r}', E) = -\delta(\mathbf{r} - \mathbf{r}')$$

$$G(\mathbf{r}, \mathbf{r}', E) = -\frac{2m}{\hbar^{2}} \frac{e^{ik|\mathbf{r} \cdot \mathbf{r}'|}}{4\pi |\mathbf{r} - \mathbf{r}'|}$$

$$|\Psi^{1}\rangle = -\int d^{3}r' G(\mathbf{r}, \mathbf{r}', E) V(r') \Psi^{0}(\mathbf{r}')$$

$$|\Psi\rangle \approx e^{ik\cdot\mathbf{r}} - \frac{2m}{4\pi\hbar^{2}} \int d^{3}r' \frac{e^{ik|\mathbf{r} \cdot \mathbf{r}'|}}{|\mathbf{r} - \mathbf{r}'|} V(r') e^{ik\cdot\mathbf{r}'}$$

$$\begin{split} |\Psi\rangle &\approx e^{i\mathbf{k}\cdot\mathbf{r}} - \frac{2m}{4\pi\hbar^2} \int d^3r' \frac{e^{ik|\mathbf{r}\cdot\mathbf{r}'|}}{|\mathbf{r}-\mathbf{r}'|} V(r') e^{i\mathbf{k}\cdot\mathbf{r}'} \\ \text{For } r \gg r', \quad |\mathbf{r}-\mathbf{r}'| \approx r - \mathbf{r}' \cdot \hat{\mathbf{r}} \\ |\Psi\rangle &\approx e^{i\mathbf{k}\cdot\mathbf{r}} - \frac{2m}{4\pi\hbar^2} \frac{e^{ikr}}{r} \int d^3r' e^{-ik\hat{\mathbf{r}}\cdot\mathbf{r}'} V(r') e^{i\mathbf{k}\cdot\mathbf{r}'} \\ &\approx e^{i\mathbf{k}\cdot\mathbf{r}} - \frac{2m}{4\pi\hbar^2} \frac{e^{ikr}}{r} \int d^3r' e^{i(\mathbf{k}-k\hat{\mathbf{r}})\cdot\mathbf{r}'} V(r') \\ \text{Scattering amplitude in the Born approximation:} \\ f(\hat{\mathbf{k}}, \hat{\mathbf{r}}) &= -\frac{2m}{4\pi\hbar^2} \int d^3r' e^{i(\mathbf{k}-k\hat{\mathbf{r}})\cdot\mathbf{r}'} V(r') \\ \end{bmatrix} \end{split}$$

