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Notes on numerical solutions of Schrödinger equation

Consider the following one-dimensional Schrödinger equation:[
− h̄2

2m

d2

dx2
+ V (x)

]
ψn(x) = Enψn(x), (1)

where V (x) is a given potential function, and En is the energy eigenvalue associated with
the eigenfunction ψn(x). This can either represent a bound state or a continuum state. One
basic approach to developing accurate numerical approximations to the solution of these

equations is to use a Taylor’s series expansion to relate the behavior of d2ψn(x)
dx2

to ψn(x′) for
points x′ in the neighborhood of x. Note that for any small distance s,

ψn(x± s) = ψn(x)± sdψn(x)

dx
+
s2

2

d2ψn(x)

dx2
± s3

3

d3ψn(x)

dx3
+
s4

4

d4ψn(x)

dx4
. . . (2)

This means that if s is small, we can approximate the second derivative according to

d2ψn(x)

dx2
≈ ψn(x+ s) + ψn(x− s)− 2ψn(x)

s2
+O(s4). (3)

This central difference approximation can be used to solve both bound state and scattering
state solutions of the Schrodinger equation 1. For an an example suppose the we have a
bound state problem with the boundary conditions ψn(0) = ψn(X) = 0 We then divide the
interval 0 ≤ x ≤ X into equal intervals with X = (N + 1)s and with N interior points.

Then we can use Eq. (3) to replace the kinetic energy operator. The Schrödinger Equation
then takes the form of a tri-diagonal eigenvalue problem:

Mvn = λnvn, (4)

where

M =


b1 c1 0 0 ..
a2 b2 c2 0 ..
0 a3 b3 c3 ..
0 0 a4 b4 ..
.. .. .. .. ..

 . (5)

The diagonal elements are bi = 2 + s2[2mV (is)/h̄2] and the off-diagonal elements are ai ≡
ci ≡ −1. Here it is assumed that X is divided into N intervals with X = (N + 1)s. vn
represents a vector of N coefficients {ψn(is)}, with i = 1, 2, 3...N . The energy eigenvalues
are given by λn = s2[2mEn/h̄

2]. One can show that the error of this numerical procedure is
of order O(s4ψiv(x)).
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By keeping the next even term in the Taylor series expansion, one can derive a Numerov
algorithm for this problem which takes the form:

Mvn = λnSvn. (6)

Here M is a tridiagonal matrix having the same form as above, and S is a positive definite
tridiagonal matrix having the form:

S =


β1 γ1 0 0 ..
α2 β2 γ2 0 ..
0 α3 β3 γ3 ..
0 0 α4 β4 ..
.. .. .. .. ..

 . (7)

In this expression, βi ≡ 10/12 and αi ≡ γi ≡ 1/12, while bi ≡ 2 + 10
12
s2[2mV (is)/h̄2],

ai ≡ −1 + 1
12
s2[2mV ((i − 1)s)/h̄2], and ci ≡ −1 + 1

12
s2[2mV ((i + 1)s)/h̄2]. One can show

that the error of this numerical procedure is of order O(s6ψvi(x)).

For the case of a spherical atom, the wavefunction is assumed to take the form

Ψnlm(r) =
Pnl(r)

r
Ylm(r̂), (8)

where the radial function Pnl(r) is determined by solving the radial Schödinger equation,
which (dropping the nl indices can be written:

d2P (r)

dr2
= A(r)P (r), (9)

where

A(r) ≡ l(l + 1)

r2
+

2m

h̄2
(V (r)− E) . (10)

Rather than solving the equation in matrix form as described above, it is generally found to
be more efficient to solve for each eigenvalue E iteratively, using the Numerov algorithm to
integrate inward and outward and matching at an intermediate point rm. For this purpose,
we can denote Pi ≡ P (is). The recursion formula is given by

Pi+1 =

(
−(1− s2

12
Ai−1)Pi−1 + (2 +

10s2

12
Ai)Pi

)
/(1− s2

12
Ai+1). (11)

For any given energy iteration, the correction to the energy eigenvalue can be estimated from
the mismatch in the slope at the matching point:

∆E =
1

N

(
dP
dr

P

⌋
in

−
dP
dr

P

⌋
out

)
, (12)

where
N ≡

∫ rm

0
|P (r)/P (rm)|2outdr +

∫ ∞
rm
|P (r)/P (rm)|2indr. (13)
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