
PHY 341/641 Thermodynamics and 
Statistical Mechanics

MWF:  Online at 12 PM & FTF at 2 PM

Discussion for Lecture 10:
Entropy and microstate multiplicity

Reading: Chapters 3.3-3.4

1. Entropy and pressure for ideal gas example

2. Entropy for a spin ½ system

Record!!!
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Colloquium tomorrow --
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Your questions –
From Parker --should we think of the Thermodynamic identity
dU=T dS - P dV as a consequence of the laws of thermodynamics? Also does 
it apply to both the macroscopic and microscopic views, or just the 
macroscopic view?
From Kristen -- 1. How can a temperature be infinite, as in the 
paramagnet example when U=0?  2. How can we apply the idea of 
paramagnets to the real world? I am having trouble visualizing 3. Could you 
define quasistatic and isentrophic in more detail?   4. In the last part of section 
3.4, it talks about how since the thermodynamic identity applies there is a 
positive change in the entropy. Why is that?
From Annelise --Does the Cv of something change based on the mass 
of whatever you are calculating? I am assuming that it does and that is what 
J/(K*Kg) means, but I just want to make sure. My discussion question for 
today is: why is the entropy highest when the U=0? I am confused when the 
book said that the temperature is infinite (meaning the system will gladly give 
up energy to any other system whose temperature is finite).
From Rich -- How do you derive the equations for change in entropy for a 
constant pressure process from the thermodynamic identity equation?
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Your questions – continued
From Chao -- how does the formula 3.30 derived from 
the result of 3.29 and 3.28?
From Michael -- Can you give us an example of a real-
world isentropic process that is both adiabatic and 
quasistatic?
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What if we consider the volume derivative of the entropy 
for a mono atomic ideal gaw?
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Evaluting  derivative: 
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What all of this tell us?

While we have derived these results for a mono atomic 
ideal gas,  perhaps we can assume that the functional 
dependences are more general.
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Looks a lot like the first 
law of thermodynamics.
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First law of thermodynamics
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Mathematical consistency
Suppose   ( , )   such that    ( , ) ( , )
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Consider a system of spin ½ particles in a magnetic field B

Note that in this model, the spins only interact with the 
magnetic field B and do not interact with each other.

Which of these real systems in a constant magnetic field is 
better represented by this model?

A. Ferromagnetic iron 
B. Water
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Example for N=100
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Plot of entropy vs U    in scaled units   for N=100
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Plot of (U/B) vs B at fixed T
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Heat capacity of system at constant field --
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