PHY 341/641 Thermodynamics and Statistical Mechanics MWF: Online at 12 PM & FTF at 2 PM Record!!!

Discussion for Lecture 11:

Variations in the number of particles Begin discussion of heat engines

Reading: Chapters 3.5-3.6; 4.1

- 1. Dependence of thermodynamic functions on the number of particle
- 2. Notions of chemical potential

3. Cyclic thermodynamic processes; engines

Course schedule for Spring 2021

schedule -- subject to frequent adjustment.) Reading assignments are for the An Introduction to Thern by Daniel V. Schroeder. The HW assignment numbers refer to problems in that text.

	Lecture date	Reading	Торіс	HW	Due date
1	Wed: 01/27/2021	Chap. 1.1-1.3	Introduction and ideal gas equations	1.21	01/29/2021
2	Fri: 01/29/2021	Chap. 1.2-1.4	First law of thermodynamics	1.17	02/03/2021
3	Mon: 02/01/2021	Chap. 1.5-1.6	Work and heat for an ideal gas		
4	Wed: 02/03/2021	Chap. 1.1-1.6	Review of energy, heat, and work	1.45	02/05/2021
5	Fri: 02/05/2021	Chap. 2.1-2.2	Aspects of entropy		
6	Mon: 02/08/2021	Chap. 2.3-2.4	Multiplicity distributions	2.24	02/10/2021
7	Wed: 02/10/2021	Chap. 2.5-2.6	Entropy and macrostate multiplicity	2.26	02/12/2021
8	Fri: 02/12/2021	Chap. 2.1-2.6	Review of entropy and macrostates	2.32	02/15/2021
9	Mon: 02/15/2021	Chap. 3.1-3.2	Temperature, entropy, heat	3.10a-b	02/17/2021
10	Wed: 02/17/2021	Chap. 3.3-3.4	Temperature, entropy, heat	3.23	02/19/2021
11	Fri: 02/19/2021	Chap. 3.5-3.6	Temperature, entropy, heat	3.28	02/22/2021
12	Mon: 02/22/2021	Chap. 4.1-4.2	Ideal engines and refrigerators	4.1	02/24/2021
13	Wed: 02/24/2021	Chap. 4.3	Real engines	4.20	02/26/2021
14	Fri: 02/26/2021	Chap. 4.4	Real refrigerators		
15	Mon: 03/01/2021				
16	Wed: 03/03/2021				
	E				

Your questions –

From Parker -- what physically is chemical potential, like what does it mean and physically correspond to?

From Kristen -- 1. Could you explain why the total entropy is a maximum at equilibrium? I find this counterintuitive. 2. How can we just add another term into the entropy equation as in formula 3.57? 3. What does diffusive equilibrium actually mean?

From Rich -- Could we discussion equation 3.60 more in class? Since entropy is not in the equation, how could the energy increase from adding the molecules without entropy increasing?

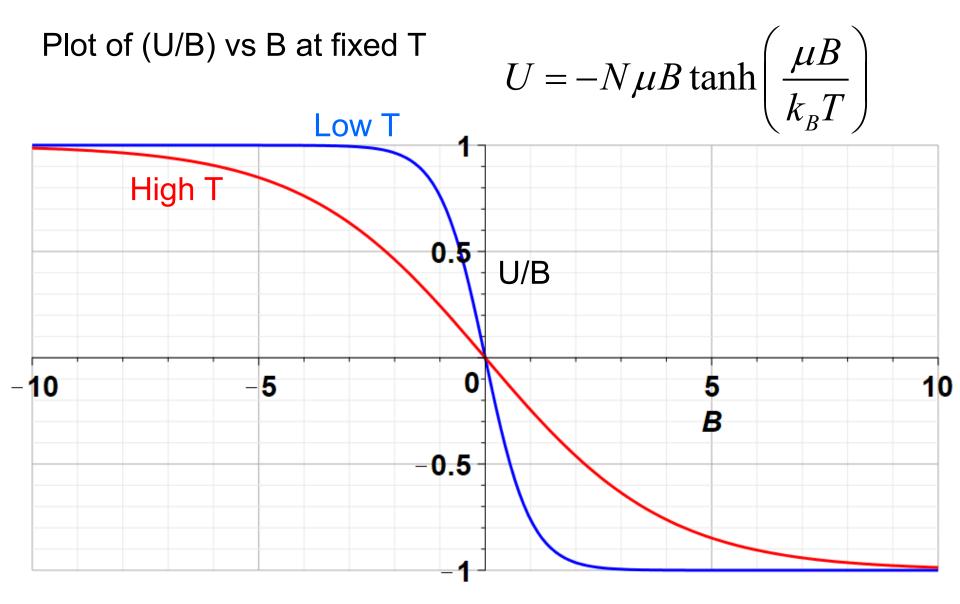
From Chao -- In the real Industry, is this formula still we need to consider other factors in the industrial production? $\mu_{chemistry}$

 $\mu_{ ext{chemistry}} \equiv -T \left(rac{\partial S}{\partial n}
ight)_{\! U,V},$

From Annelise -- What is diffusive equilibrium? I am a little confused about what is being exchanged and what is being held fixed?

From Zezhong -- I wonder if there is a definition by word description on chemical potential instead of mathematical formula?

Correction from Wednesday's lecture --



Variables of thermodynamics

- **Temperature** $-T \ge 0$ in Kelvin scale
- \Box Volume V in units of m³
- □ Pressure P in units of Pascals (Newtons/m²)
- □ Entropy S in units of Joules/K
- □ Mass M in units of kg
- Number of particles N
 - $\hfill\square$ Chemical potential μ in units of Joules

Recall for the mono atomic ideal gas:

$$PV = Nk_{B}T$$
$$U = \frac{3}{2}Nk_{B}T$$
$$S(N,V,U) = Nk_{B}\left(\ln\left(\frac{V}{N}\left(\frac{4\pi MU}{3Nh^{2}}\right)^{3/2}\right) + \frac{5}{2}\right)$$

Previously we have shown that

$$\left(\frac{\partial S}{\partial U}\right)_{N,V} = \frac{1}{T} \qquad \left(\frac{\partial S}{\partial V}\right)_{N,U} = \frac{P}{T}$$

What happens when the number of particles N changes?

$$PV = Nk_{B}T$$

$$U = \frac{3}{2}Nk_{B}T$$

$$S(N,V,U) = Nk_{B}\left(\ln\left(\frac{V}{N}\left(\frac{4\pi MU}{3Nh^{2}}\right)^{3/2}\right) + \frac{5}{2}\right)$$

$$\left(\frac{\partial S}{\partial N}\right)_{U,V} = k_{B}\ln\left(\frac{V}{N}\left(\frac{4\pi MU}{3Nh^{2}}\right)^{3/2}\right)$$

$$\equiv -\frac{\mu}{T}$$

$$\mu \text{ was introduced by Gibbs as the "chemical potential"$$

Summary of results for mono atomic ideal gas --

$$PV = Nk_{B}T \qquad U = \frac{3}{2}Nk_{B}T$$

$$S(N,V,U) = Nk_{B}\left(\ln\left(\frac{V}{N}\left(\frac{4\pi MU}{3Nh^{2}}\right)^{3/2}\right) + \frac{5}{2}\right)$$

$$\left(\frac{\partial S}{\partial N}\right)_{U,V} = k_{B}\ln\left(\frac{V}{N}\left(\frac{4\pi MU}{3Nh^{2}}\right)^{3/2}\right) = -\frac{\mu}{T}$$

$$\mu = -k_{B}T\ln\left(\frac{V}{N}\left(\frac{4\pi MU}{3Nh^{2}}\right)^{3/2}\right) = -k_{B}T\ln\left(\frac{V}{N}\left(\frac{2\pi Mk_{B}T}{h^{2}}\right)^{3/2}\right)$$

Summary --

$$PV = Nk_{B}T$$

$$U = \frac{3}{2}Nk_{B}T$$

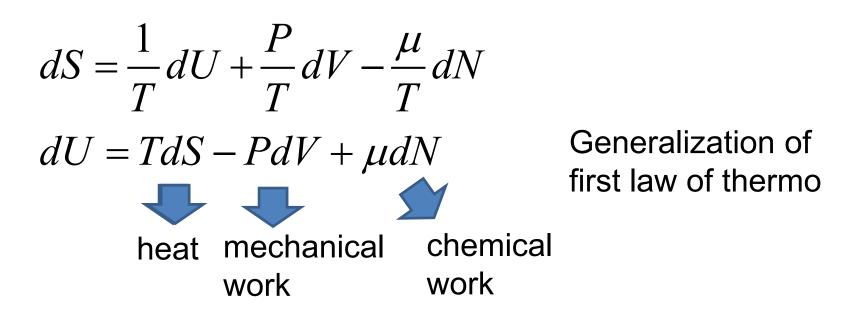
$$S(N, V, U) = Nk_{B}\left(\ln\left(\frac{V}{N}\left(\frac{4\pi MU}{3Nh^{2}}\right)^{3/2}\right) + \frac{5}{2}\right)$$

$$(25)$$

$$dS = \left(\frac{\partial S}{\partial U}\right)_{N,V} dU + \left(\frac{\partial S}{\partial V}\right)_{N,U} dV + \left(\frac{\partial S}{\partial N}\right)_{U,V} dN$$

$$dS = \frac{1}{T}dU + \frac{P}{T}dV - \frac{\mu}{T}dN$$

Expressing result in term of the internal energy



Are these equations consistent with each other?

Are they useful?

Are these equation internally consistent?

 $dU = TdS - PdV + \mu dN$

Suppose U and V are constant; dU = 0 and dV = 0

$$\Rightarrow 0 = TdS - 0 + \mu dN$$

$$\frac{\mu}{T} = -\left(\frac{\partial S}{\partial N}\right)_{U,V}$$

Suppose *S* and *V* are constant; dS = 0 and dV = 0

$$\Rightarrow dU = 0 - 0 + \mu dN$$

$$\mu = \left(\frac{\partial U}{\partial N}\right)_{S,V}$$

Note that we will see other relationships with μ that may be more convenient or physical, namely perhaps at constant T and P.

How might this be useful?

Imagine a chemical reaction

$$H_2O \rightarrow H_2 + \frac{1}{2}O_2$$

Associated chemical potentials

$$\mu_{H_2O}$$
 μ_{H_2} μ_{O_2}

Generalized relation at constant *S* and *V*:

$$dU = \sum_{i} \mu_{i} dN_{i} \quad \rightarrow \mu_{H_{2}} dN_{H_{2}} + \mu_{O_{2}} dN_{O_{2}} + \mu_{H_{2}O} dN_{H_{2}O}$$

In practice G (Gibbs free energy) is often more useful than U (internal energy) for analyzing this situation.

Comment – One practical consideration of allowing N to vary, is that we need to relax our focus on "isolated" systems, and to think about particles diffusing --

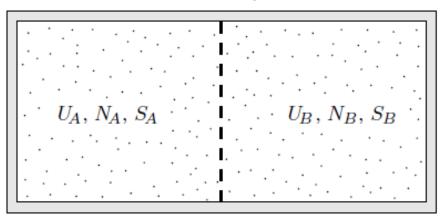
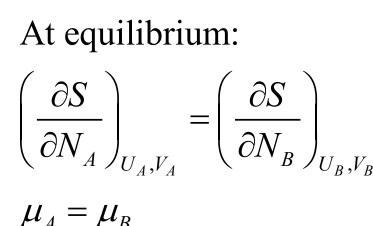
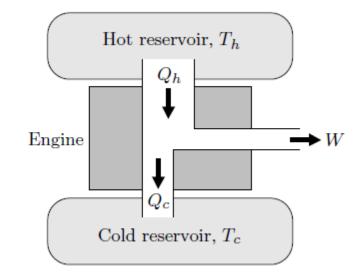


Figure 3.18. Two systems that can exchange both energy and particles. Copyright ©2000, Addison-Wesley.



Introduction to the thermo(statics) of heat engines

Figure 4.1. Energy-flow diagram for a heat engine. Energy enters as heat from the hot reservoir, and leaves both as work and as waste heat expelled to the cold reservoir. Copyright ©2000, Addison-Wesley.



In the engine, the desirable output is the net work while the necessary input is the heat input

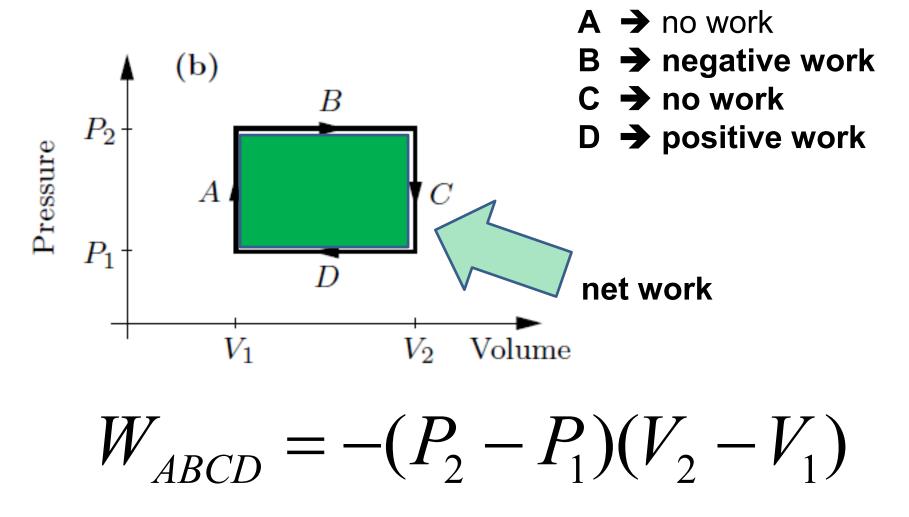
Engine efficiency

$$\epsilon \equiv \frac{W_{net}}{Q_{in}}$$

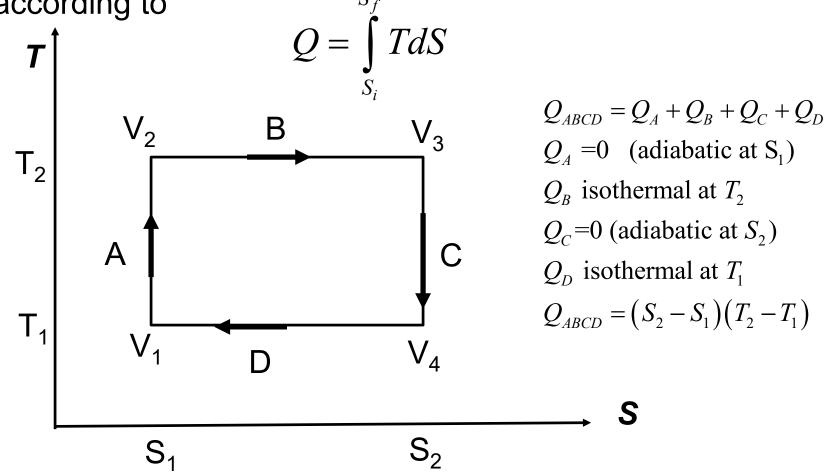
Note that the net work of interest is the work done **by the system**.

Net work done in a cyclic process

Consider the following 4 step cycle



Carnot invented a very efficient ideal cycle which Clausius further analyzed as "entropy" *S* which is related to heat according to S_f



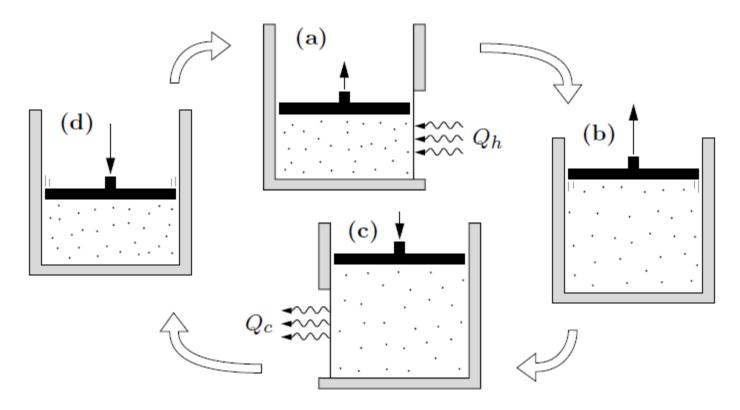


Figure 4.2. The four steps of a Carnot cycle: (a) isothermal expansion at T_h while absorbing heat; (b) adiabatic expansion to T_c ; (c) isothermal compression at T_c while expelling heat; and (d) adiabatic compression back to T_h . The system must be put in thermal contact with the hot reservoir during step (a) and with the cold reservoir during step (c). Copyright ©2000, Addison-Wesley.

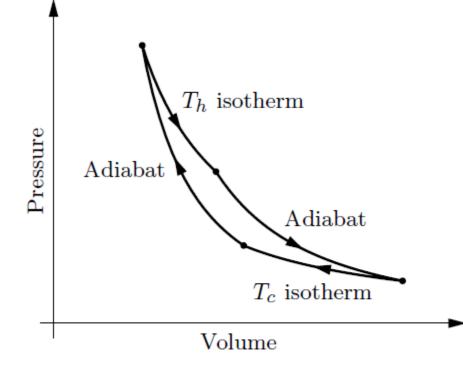
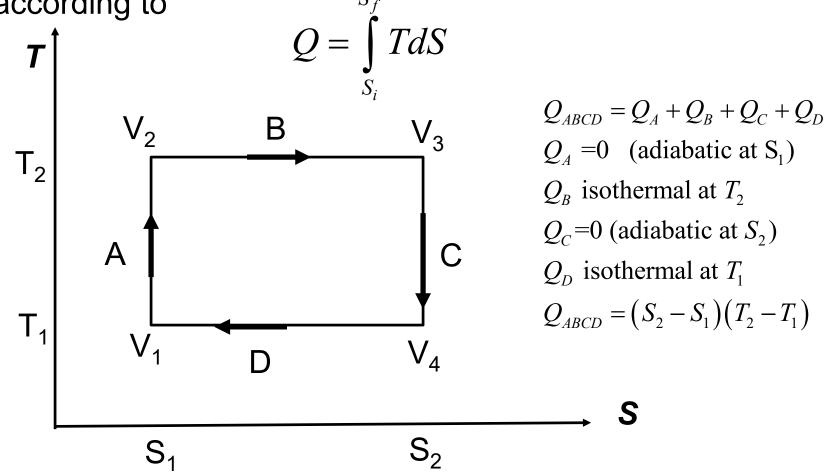


Figure 4.3. *PV* diagram for an ideal monatomic gas undergoing a Carnot cycle. Copyright ©2000, Addison-Wesley.

Some details from Lecture 5 --

Carnot invented a very efficient ideal cycle which Clausius further analyzed as "entropy" *S* which is related to heat according to S_f



Some details

Ideal gas equation of state $PV = Nk_BT$

Ideal gas internal energy $U = \frac{Nk_BT}{\gamma - 1}$

First law of thermodynamics

$$\Delta U = Q + W$$

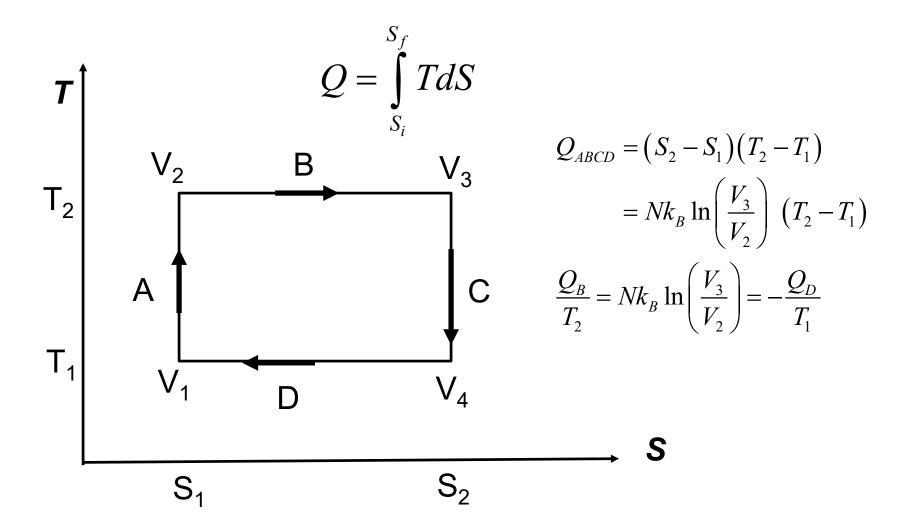
For isothermal process $\Delta U = 0$ and Q = -W

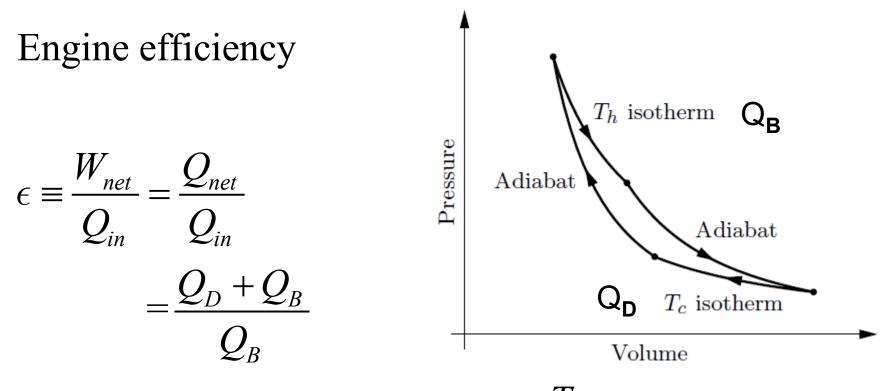
$$Q_B = Nk_B T_2 \ln\left(\frac{V_3}{V_2}\right) \qquad Q_D = Nk_B T_1 \ln\left(\frac{V_1}{V_4}\right)$$

Also note that because of adiabatic ideal gas equations -- $V_1 T_1^{1/(\gamma-1)} = V_2 T_2^{1/(\gamma-1)}$ and $V_3 T_2^{1/(\gamma-1)} = V_4 T_1^{1/(\gamma-1)}$ $\Rightarrow \frac{V_3}{V_2} = \frac{V_4}{V_1} \Rightarrow Q_{ABCD} = Nk_B \ln \left(\frac{V_3}{V_2}\right) (T_2 - T_1)$ PHY 341/641 Spring 2021 -- Lecture 11

2/19/2021

Summary of results





For the Carnot cycle --
$$Q_D = -Q_B \frac{T_C}{T_H}$$

$$\epsilon = 1 - \frac{T_C}{T_H}$$

PHY 341/641 Spring 2021 -- Lecture 11