
PHY 341/641 Thermodynamics and 
Statistical Mechanics

MWF:  Online at 12 PM & FTF at 2 PM

Discussion for Lecture 13:
Practical thermodynamic cycles

Engines, refrigerators, etc.

Reading: Chapters 4.3-4.4

1. Otto and Diesel cycles

2. Rankine cycle

3. Other processes

Record!!!
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Thursday’s Physics Colloquium --
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Your questions –

From Kristen -- 1. For the refrigerator discussed in the beginning of 4.4, (Figure 
4.9), how can something be compressed without changing its volume?   2. With laser 
cooling, how does hitting the atoms cause them to slow down?

From Parker -- Why is the force between any two molecules weakly attractive at 
long distances and strongly repulsive at short distances, and usually the attraction 
dominates making U potential energy negative?

From Michael -- Can you further explain how a throttling valve operates in order to 
make the incoming gas cold enough to liquefy? I can't conceptually understand this 
concept currently.

From Rich -- In a heat exchanger, does the throttled gas heat the liquid in the 
evaporator? Where is the excess heat sent?  In laser cooling, why wouldn't the 
effects/forces of all lasers cancel out?
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Questions continued –
From Chao -- Why when temperature reaches absolute zero, the entropy will 
become Zero? If we look at the formula of microstate, Omega, it seems like there 
is a factor of 5/2 out there.

From Zezhong -- Is there any difference on heat cycle between the real 
refrigerator and helium dilution refrigerator although their structures are quite 
different.

Comment – from Sackur-Tetrode equation

Probably need to consider details of derivation in the 
limit that T 0.  Is the ideal gas law still true?
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Idealized Otto cycle Ideal gas relations:
Ideal gas equation of state  
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Q12=0

Q34=0

Idealized Otto cycle
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https://dieselnet.com/tech/diesel_history.php#diesel

Nikolaus Otto
1832-1891

https://www.britannica.com/biography/Nikolaus-Otto

https://dieselnet.com/tech/diesel_history.php#diesel
https://www.britannica.com/biography/Nikolaus-Otto
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Idealized Diesel cycle a

d

c

b

r

Ideal gas relations:
Ideal gas equation of state  

Ideal gas internal energy  
1

Typically,    1.4 fo r ai

B

B

PV Nk T
Nk TU
γ

γ

=

=

=
−

0bcQ =

0daQ = Power stroke

Compression
stroke

1

2

3

2

Compression ratio:

Cutoff ratio: 

V
V

V
V



2/24/2021 PHY 341/641  Spring 2021 -- Lecture 13 10

Example of a cycle NOT using an ideal gas – the Rankine cycle

William John Macquorn Rankine (1820-1872)

Developed the steam 
turbine cycle
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Other representations of the Rankine cycle –
https://www.nuclear-power.net/nuclear-engineering/thermodynamics/thermodynamic-cycles/rankine-cycle-steam-turbine-cycle/

12 adiabatic compression of 
condensed water to high P
23a  water is heated to boiling
3a3  water is vaporized at 
constant T and high P
34 adiabatic expansion of 
steam
41 steam is condensed and 
cooled at constant T

https://www.nuclear-power.net/nuclear-engineering/thermodynamics/thermodynamic-cycles/rankine-cycle-steam-turbine-cycle/
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12 adiabatic compression of condensed water to high P
23a  water is heated to boiling
3a3  water is vaporized at constant T and high P
34 adiabatic expansion of steam
41 steam is condensed and cooled at constant T
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Some details from your textbook --

Digression -- note that constant pressure processes
are conveniently analyzed in terms of enthalpy 
Why?

H U PV= +
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Efficiency of Rankine cycle
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Some numerical values from your textbook –

Conditions in textbook:
1. T= 20oC, P=0.023 bar         3.   T=600o C   P=300 bar
4.   S=6.233 kJ/K

H1
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H3

S3
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4

At step 4 we have a mixture of water and steam at 
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Thermodynamics for cooling
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However, in order to cool even further, phase change 
processes are needed.   While water works well in a 
steam engine,   the temperatures involved are not 
appropriate for refrigeration.
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Refrigeration process based on Freon
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1 – gas compressed adiabatically to higher T and P, smaller V
2 – gas liquifies and heat removed
3 – pressure reduced on liquid forming liquid and gas -- “throttle”
4 – gasification at constant pressure
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Details of throttle process for ideal gas

1

Note that for an ideal gas,  so that 
1
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may involve phase change due to interactions between particles.

Porous plug
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Because of its convenient melting point (-158oC) and 
boiling point (-30oC) Freon has been used throughout the 
20th century as the refrigerant of choice.   However, since 
2010 has been gradually replaced because of it’s
contribution to ozone deletion in the atmosphere.
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Extreme refrigeration due to quantum mechanics

1. Helium dilution refrigeration  <0.001K  the two isotopes 
of He – 3He and 4He have very different behaviors near 
T ~ 0 having Fermi and Bose statics, respectively.    
Dissolving small amounts of 3He into 4He absorbs heat. 
The cycle involves steps separating and then mixing 
3He and 4He.                                        
https://nationalmaglab.org/about/around-the-lab/what-the/dilfridge

2. Lasers can be used to generate strong electromagnetic 
fields that can control the motions of atoms a low 
temperature resulting in laser cooling. The process 
involves quantum mechanical absorption and emission 
of light. 
http://info.phys.unm.edu/~ideutsch/Classes/Phys500S09/Downloads/newoptics.pdf

https://nationalmaglab.org/about/around-the-lab/what-the/dilfridge
http://info.phys.unm.edu/%7Eideutsch/Classes/Phys500S09/Downloads/newoptics.pdf
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