PHY 341/641 Thermodynamics and
Statistical Mechanics
MWF: Online at12 PM & FTF at 2 PM

Record!!!
Discussion for Lecture 23:

Introduction to statistical mechanics —
Single particle and multi particle systems

Reading: Chapter 6.1-6.7
1. Partition function for a simple free particle
2. Partition function for a complex free particle

3. Partition function for multiple particles;
distinguishable or indistinguishable
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21 Mon: 0312212021 Chap. 6.1 & 6.9 Microcanonical and canonical ensembles

22 \Wed: 032412021 (Chap.6.1-6.2  (Canonical distributions #18  0312612021
23 |Fri: 032612021 Chap.6.1-6.7  Canonical distnibutions 049 (0372972021
24 Mon: 03/29/2021  Chap.6.1-6.7  Canonical distributions

Homework problem from textbook:

6.49 For a mole of nitrogen (N,) gas at room temperature and
atmospheric pressure, compute the following: U,H,F,G,S, and

4. The rotational constant ¢ for N, is 0.00025 eV. The

electronic ground state is non degenerate.
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Your questions —

From Kristen -- 1. While | mostly understand the proof of the equipartition
theorem, | am still a bit unsure about what it is actually telling us/why it is important.

2. What does Vrms (the root-mean-square speed) actually mean and how can we
drive its equation from the equipartition formula?

From Rich -- What do you use for Uint and Fint when calculating the Cv or F
from the partition function?



Canonical ensemble for system in bath

~U, /KT

<
]

~U,/kT
" where Z :Ze S
z ;
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Examples for systems of single particles:
First consider a single atom of mass m in box of volume V

Its energy depends on only on its momentum p in terms of its
Kinetic energyU U p

2m

o 3
Z ~U, /kT N J‘ds J‘d3p e_pz/(zka) (J‘dp epi/(kaT))

| I‘ ;

= ?(272ka )3/2

Planck’s constant for See Appendix B

compatibility with v

QM 3/2
1 trans (T V) o (272-ka)

h3
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Now consider the motions of a more complicated system
such as a diatomic molecule
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Translations of
center of mass

Us — Utrans (p) T Urot (]) + Uvib (V)
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Rotations of a diatomic molecule

Quantum mechanics tells us that the rotational energy levels of rotating diatomic
molecule  has discrete states specified by integers j =0,1,2,3...

U.(J)=j(j+1e each with degeneracy 2;+1

Zrot (T) — Z (2] + l)e_j(jﬂ)e/kT

j=0
Energy
A
12+ j =3
Figure 6.6. Energy level dia- T
gram for the rotational states 1
of a diatomic molecule. Copy- T .
right (©)2000, Addison-Wesley. be T ) =<
et Jj=1
01 — =0
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Rotations of a diatomic molecule -- continued
Zrot (T) — 2(2] + l)e_j(j+l)6/kT
Jj=0

F,(T)y=-kThn(Z,,(T))

Srot (T) — _(@EOt j . Urot
oT NV 3-
Urot(T) = Fmt(T) —|—TSmt(T)
24
1_
0- I B
kT/e
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Vibrations of a diatomic molecule (see Appendix A)

S| 1
Uvib — p’” +_ﬂra)2x3 Uvib (V) — ha)(v T

2u 2 >
. - —(v+1/2)haw!/ kT Vix)
Zvib (T) _ € A
v=0 \
B e—ha)/2kT E- \
- | — o hO/T Fy

=Y



Digression on geometric summation

Zw.b (T) = i o (V2T
v=0

—ha/2kT
e

helkT
11—

. — — _ 1%
Some details: e VTV _ phol(KT) (e hw/(kT))

ZXV =L for x <1
v=0 l—x



Vibrations of a diatomic molecule

e—ha)/ZkT
Zy(T)= = | _ g kT _
Fo(1)=—kTIn(Z,()) 5
S, (T) = _(awa j 45:
T Jyy |

U,(T)=F,,(T)+T15,,(T)

B 1 1 3.5
=ho 5+ehw/kT_1

Uvib
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Partition function for single molecule including translational
and “internal” motions

Zl (1,V)=2 (7, V)Zl rot (T)Zl vib (7')

Now suppose that there are N particles. Last time we
suggested that if the particles are not interacting, then

1 trans

Zy=(Z)N

It turns out that this approach is correct if the particles are
distinguishable. However, for indistinguishable particles,
the correct N particle partition function should be

Z(T,V,N) = %(z1 (T,V))"



1
N'(
F(T,V,N)=—kTNIn(Z,(T,V))+kTInN!

~—kTNIn(Z(T,V))+kTN(In N —1)
Zi(T,V)= 2L, s (T V)2, (1)L, i, (T)

Z(T,V,N)=—(Z/(T, V))

1 trans

v

(7, V)—h3

(27zka )3/2

1 trans



First consider the mono atomic case:

Z(T,V,N) = %(Z1 (T, 7))"

F(T,V,N)=—kTNIn(Z,(T,V))+kTN(In N —1)
V

I3

3/2
kTN(ln{Z(zﬂZZkT) )+1j

3/2
S:—(a—Fj = Nk| In V(””Z"Tj +2
oT ), N & 2

U=F+TS=%NkT

— —kTNln( (2ﬂka)3/2)+kTN(th_1)

6 =3
2



Now consider a complex molecule with
ZI(T?V):Z (TﬁV)Zlint(T) Where Zlint(T) :erot(T) Zlvib(T)

1 trans

F(T,V,N)==kTN (In(Z, 0, (T.V)) +In(Z, ., (T,V))) + kTN (In N -1
=, (T,V,N)=kTNIn(Z, . (T,V))

S = (aFj Strans + kN hl (Zl int (T9 V)) kTN (821 int j
oT NV Ly ini (T,V) NV

_Stmns + S 1

+U. =U

trans

U=F+T1TS=U

trans

oU
CV = (6_]1)]\], = CVtmns + CVrot + CVwb

+ Urot T Uvib



Plot of internal energy as a function of temperature
for model diatomic molecule
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- Vibration

Rt g
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3

glp==- '

Translation
10 100 1000

Figure 1.13. Heat capacity at constant volume of one mole of hydrogen (H2) gas.
Note that the temperature scale is logarithmic. Below about 100 K only the three
translational degrees of freedom are active. Around room temperature the two
rotational degrees of freedom are active as well. Above 1000 K the two vibrational
degrees of freedom also become active. At atmospheric pressure, hydrogen liquefies
at 20 K and begins to dissociate at about 2000 K. Data from Woolley et al. (1948).
Copyright (©)2000, Addison-Wesley.
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