PHY 341/641 Thermodynamics and
Statistical Mechanics
MWF: Online at12 PM & FTF at 2 PM

Record!!!
Discussion for Lecture 25:

Introduction to statistical mechanics —
Canonical ensembles and their thermodynamic properties

Reading: Appendix A and begin Chapter 7
1. Elements of quantum mechanics

2. Fermi quantum particles and Bose quantum
particles compared with distinguishable particle
combinations
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4 PM

PHYSICS THURSDAY

COLLOQU|UI\/\ APRIL 1, 2021

ZOOM link

“From Fukushima to the
Future: Lessons Learned and
New Developments”

The day before a huge tsunami hit the coast of Japan on
March 11, 2011, nuclear power appeared to be poised
for a "renaissance” in much of the world. However, the
tsunami resulted in a major accident at the Fukushima
nuclear power plant, causing the world to hit the pause
button on nuclear power development. In the 9 years
since that accident, the industry has focused on
understanding the underlying causes of the accident
and modifying current nuclear plants and operations Dr. Ga || Marcus
based on the lessons learned. Now, new nuclear power
plants are being built in several countries, and more are
being planned. This talk will address the accident and its
aftermath, including major changes that have been and Policy
made at existing plants, as well as the status of nuclear Washington, DC
power today in different countries, and how advanced

nuclear reactor concepts might affect the future of
nuclear power. PHY 341/641 Spring 2021 -- Lecture 25

Independent Consultant
Nuclear Power Technology

3/31/2021
4:00 pm



I
Mon: 03/22/2021

21

|
Chap. 6.1 & 6.5 |Microcanonical and canonical ensembles

Wed: 03/31/2021

App. A & Chap.
7.1

Quantum mechanical effects

22 \Wed: 03/24/2021 |Chap. 6.1-6.2 |Canonical distributions #18  03/26/2021
23 |Fri: 03/26/2021  |Chap. 6.1-6.7 |Canonical distributions 6.49 03/29/2021
24 (Mon: 03/29/2021 Chap. 6.1-6.7 |Canonical distributions #20  |03/31/2021

04/02/2021

26

IFri: 04/02/2021

Chap. 7.1-7.2

|C1uantum mechanical effects

PHY 341/641 -- Assighnment #21

Read Appendix A and start reading Chapter 7 in Schroeder .

March 31, 2021

Consider three different states A,B,C each with a different energy and three particles 1,2,3. Enumerate the possible distinct
distributions of the particles among the states and their corresponding energies for the following cases:

1. The three particles are distinguishable
2. The three particles are indistinguishable and obey Bose statistics
3. The three particles are indistinguishable and obey Fermi statistics
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Your questions — To be answered on Friday --

From Kristen -- 1. Could you explain why in this case we keep the mu dN term

(equation 7.3)? 2. Why must Z be an integer in the example given in the beginning
of section 7.2? 3. Could you explain what the quantum volume represents?

From Rich -- How do you calculate Zint for equation 7.10?

From Chao —

The grand partition function for this single-site system has just two terms:

Z =14 <P (7.9)

From Michael -- How do we distinguish the Gibbs sum/grand partition function

from other partition functions we have learned about thus far, and when would we
use it exactly?
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What new physics does Quantum Mechanics bring?

Classical mechanics

Newton’s Laws of motion —
Particle motion described in
term of position and momentum
r, p. In many cases, energy is
conserved and equal to the
Hamiltonian function:

2

H(r,p) =§—m+V(r) =F

Particles can be distinguishable

Quantum mechanics

Schoedinger Equation --

Particle motion is described in
terms of a probability amplitude
v; momentum becomes an
operator; particles have intrinsic
spin; energy is an eigenvalue of
the Schroedinger equation:

FY = EY

Particles are generally indistinguishable
and have characteristic properties
depending on their intrinsic spin



Examples of solutions to the Schroedinger resulting in discrete states
FEY = EY

Intrinsic S spin of a particle having a gyromagnetic ratio y

The quantum operators associated with spin are:
Sz‘{ls,m =s(s+D¥,,

S, =mY¥,, form, =—s,—s+1,...s

Energy eigenstates are realized in a magnetic field

along the z-axis

F=—uB. for u=hyS, Examples:

Electron: s=1/2 7=1.76085963023x10"s'T'
Proton:  s=1/2 ¥ =2.6752218744x10% ' T
Neutron: s=1/2 7 =1.83247171x10°s'T""
Deuterium (CH): s=1 y=4.11x10"s"'T"'

Helium (‘He): s =0



Examples of solutions to the Schroedinger resulting in discrete states

2 2
HY = EY —h—d—zT:E\P P(0)=¥(L)=0
2m dx

Particle confined within a one-dimensional box of length L
Vi) g A

N

0 L

Figure A.9. A few of the lowest energy levels and corresponding definite-energy
wavefunctions for a particle in a one-dimensional box. Copyright (©)2000, Addison-
Wesley.

3/31/2021 PHY 341/641 Spring 2021 -- Lecture 25 7



Examples of solutions to the Schroedinger resulting in discrete states

2 2
FEY = EY —h—d—+%ma)2x2 Y= EY

2m dx

2

Harmonic oscillator in one-dimension

S N

=Y

E}’l
Va(x) ‘l/\ /\

Figure A.10. A few of the lowest energy levels and corresponding wavefunctions
for a one-dimensional quantum harmonic oscillator. Copyright (©)2000, Addison-

Wesley.
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Examples of solutions to the Schroedinger resulting in discrete states

2 2
HY = EY __T > .1 a(sm&’aj 12 82 Y =EY
21 R°\sinf 00 00) sin” 0 op

Rigid rotor with moment of inertia /

rot

h2
E = I(1+1 [=0,1,2,....
21mtR2( )
¥(0,0)=Y, (0,0) m=—1,—1+1..1 (2I+1)

Yy (0,0) = \/7

Y (0,0) = |—=sinfe™ ¥, (0,0)=\|—=cosd ¥, (8.p) = |—=sin e
8 4 87

T T



SATYENDRA NATH BOSE Enrico Fermi

| January 1894—4 February 1974 1901-1954

Bose particles have integer s Fermi particles have half integer s
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Experimentally observed properties of Bose and
Fermi particles --

Bose particles have integer s. It is observed that non
interacting identical Bose particles are symmetrical under
particle swapping — ¥(1,2)=¥(2,1). Interms of single particle

states "
Yy (1,2) = \g (P, (DY,;2)+Y¥,(2)¥,0)

Fermi particles have half integer s. It is observed that non
Interacting identical Fermi particles are anti-symmetrical under
particle swapping — ¥(1,2)=-¥(2,1). Interms of single particle
states

Y permi(1,2) = \g (P, (DY,(2)-Y, (¥, (D)



W e (1,2) =g (¥, (D¥,(2)+¥ ¥, (1)

Y permi(1,2) = \g (¥, (D¥,(2)-¥,(2)¥, (D)

What happens if the wavefunctions for A and B are the
same”?
a. This affects both Bose and Fermi particles the same
way
b. This affects Bose particles significantly.
c. This affects Fermi particles significantly.



W e (1,2) =g (¥, (D¥,(2)+¥ ¥, (1)

Y permi(1,2) = \g (¥, (D¥,(2)-¥,(2)¥, (D)

Conclusions for properties of non interacting identical Bose
particles =» Many Bose particles may occupy the same
quantum state
« Explains behavior of quanta of electromagnetic
radiation (photons)
* Explains “Bose condensation”

Conclusions for properties of non interacting identical Fermi
particles = A quantum state may accommodate 1 or 0
Fermi”

» Explains behavior of electrons in an ideal metal



Suppose that you have three states A, B, C with different
wavefunctions and energies and two non interacting
particles. What valid combinations exist for your system

System of distinguishable classical particles 1 & 2:

A | B | C | Config energy
12 2A

12 2B
12 2C

N =~ = DN

B+C
A+C
A+C

L) " \ V)
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System of indistinguishable Bose particles 1 & 2:

A | B | C___| Config energy
12 2A

12 2B

12 2C
1 2 A+B
1 2 B+C
1 2 A+C
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System of indistinguishable Fermi particles 1 & 2:

A | B | C___| Config energy
1 2 A+B

1 2 B+C
1 2 A+C
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