PHY 341/641 Thermodynamics and
Statistical Mechanics
MWF: Online at12 PM & FTF at 2 PM

Record!!!
Discussion for Lecture 26:

Quantum effects in statistical mechanics

Reading: Appendix A and Chapter 7

1. Statistical mechanics of photons as Bose
particles

2. Notion of density of states for photon states

3. Black body radiation
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I |
21 (Mon: 03/22/2021 Chap. 6.1 & 6.5 |Microcanonical and canonical ensembles
22 \Wed: 03/24/2021 |Chap. 6.1-6.2 |Canonical distributions #18  03/26/2021
23 |Fri: 03/26/2021  |Chap. 6.1-6.7 |Canonical distributions 6.49 03/29/2021
24 (Mon: 03/29/2021 Chap. 6.1-6.7 |Canonical distributions #20  |03/31/2021
25 Wed: 03/31/2021 ‘:‘Ep A & Chap. Quantum mechanical effects #21  104/02/2021
| s | | |
26 |Fri: 04/02/2021  |Chap. 7.1-7.2 |Quantum mechanical effects
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Your questions — To be answered on Friday --

From Kristen -- 1. Could you explain why in this case we keep the mu dN term

(equation 7.3)? 2. Why must Z be an integer in the example given in the beginning
of section 7.2? 3. Could you explain what the quantum volume represents?

From Rich -- How do you calculate Zint for equation 7.10? Could you

breakdown and better explain the (e-u)/kT phrase of the Fermi-Dirac and Bose-
Einstein distributions?

From Chao —

The grand partition function for this single-site system has just two terms:

2 =14 len/T (7.9)

From Michael -- How do we distinguish the Gibbs sum/grand partition function
from other partition functions we have learned about thus far, and when would we

use it exactly? What exactly do the Fermi-Dirac and Bose-Einstein Distributions tell
us?



From Parker -- What is the meaning behind degenerate energy levels
that are equivalent in quantum mechanics as they are linearly independent,
but are counted separately in statistical mechanics?



Summary of results from Wednesday --

Experimentally observed properties of Bose and
Fermi particles --

Bose particles have integer s. It is observed that non
interacting identical Bose particles are symmetrical under
particle swapping — ¥(1,2)=¥(2,1). Interms of single particle
states

Y s (1,2) = \g (¥, (D¥,2)+¥,(2)¥,1)

Fermi particles have half integer s. It is observed that non
interacting identical Fermi particles are anti-symmetrical under
particle swapping — ¥(1,2)=-¥(2,1). In terms of single particle

states "
Vi (1,2) = \g (Y, (DH¥Y;2)-Y,2)¥,1)



W e (1,2) =g (¥, (D¥,(2)+¥ ¥, (1)

Y permi(1,2) = \g (¥, (D¥,(2)-¥,(2)¥, (D)

Conclusions for properties of non interacting identical Bose
particles =» Many Bose particles may occupy the same
quantum state
« Explains behavior of quanta of electromagnetic
radiation (photons)
* Explains “Bose condensation”

Conclusions for properties of non interacting identical Fermi
particles = A quantum state may accommodate 1 or 0
Fermi”

» Explains behavior of electrons in an ideal metal



Consider the case of Bose particles. In this lecture we will
focus on photon particles from quantum electromagnetic
rays. It is reasonable to assume that the photon particles
are non-interacting.

We learned that for Bose statistics, any number of particles

can occupy each state. For photons the total number of
particles 1s not fixed.  For a state of energy €> 0, 1n thermal
equilibrium at temperature T, the partial single particle partition
function 1s given by (S =1/kT)

Zl(e,T)zz“e_"ﬁ6 =l+e +e re ... = 1
n=0 —e€



Digression on geometric summation:

Z,(e,T) =Ze‘”ﬁ€ =l+e +e re 4. =
n=0

Proof:
e—ﬂeze—nﬂe _ Ze—nﬂe _1
n=0 n=0

— (l—eﬂe)ie”ﬂe =1 or 2e”ﬂe =7/, (e,T)

Note that 1t 1s interesting to ask the question, for a given

single particle energy €, what 1s the average occupancy <nS>

ni; e 1

A




Partition function for ensemble of photons at
equilibrium at temperature T and having
characteristic energies ¢, g,, €, ...

1 1 1
l—e P 1—e P | —e P

Z(TY=Z/€,,T)Z,(,,T)Z (€., T)...=

InZ(T)=-) In(1-¢" )
In practice, the state energies €, form a continuum

Z—> ja’ e g(¢)  where g(e) denotes the density of states

It can be shown that for a system of photons within

a volume V', the density of photons at energy € 1s

Ve’ . L
g(e) = 2; - Wwhere c 1s the speed of light in vacuum.
Thc




Electromagnetic modes within volume V=L3

/ hc

/ 2 2 2

/ E=—/N_t+n +n
Ly -

for integers n,n ,n,

In the limit that L — oo,

e becomes continuous.

Note that g(¢) accounts

> for two polarizations of

4 photons.
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Average internal energy for photons in equilibrium
at temperature 7' =1/ (k)

<U> = J-de 2(€) e<n(e)> g(€) =

1 8V (kT = 3

=—2V3 3j.de € = 3(3 ) jdx a
Thc e’ —1 hc e —1
_r
15

0.6 -

2 4 6 8 10 12
xz=¢/ET

Figure 7.19. The Planck spectrum, plotted in terms of the dimensionless variable
v = e/kT = hf/kT. The area under any portion of this graph, multiplied by
8?T(kT)4 / (h,cr)g, equals the energy density of electromagnetic radiation within the
corresponding frequency (or photon energy) range; see equation 7.85. Copyright
(©)2000, Addison-Wesley.
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Historical importance of the formula for Blackbody radiation

4/02/2021

Max Planck 1858-1947

A blackbody means an idealized
opaque (non-reflective) material
which can absorb and emit
electromagnetic radiation. If the
body has an equilibrium
temperature T, the energy

associated with the blackbody is
<U>.

pfSﬂj(kT)4

15(hc)3

PHY 341/641 Spring 2021 -- Lecture 26

12



Heat capacity and entropy associated with the equibrium
blackbody radiation

87° (kT')'
(UY=V : ( 3
5(hc)
57 .43
Heat capacity: C,, = (dc§]({>) _ V31257z( ; )]3“
c
T 57 43
Entropy: S(T) :j (T)dT'_V 2k’ T

0 45(hc)3



Checking results
Helmholtz free energy:

:—lenZ(T)=szln(1_e_ﬂes )

In practice, the state energies €, form a continuum

Z—> jd e g(e)  where g(e) denotes the density of states

Ve
g(e) = EPERE
8V (kT)* n*
_ 2 pe —
F(T)—kTﬂz 3 3jdee In(1-e”)=- PRI

=U-TS



More modern evidence of blackbody radiation from the
remnant radiation from the initiation of the universe
measured by the cosmic background explorer satellite.

Average internal energy for photons in equilibrium
at temperature 7 =1/ (k)

= Ide 2(€) e<n(e)>

4 1 8V (kT)' 3
=— JdG E3 ) _ 3( : ) I N X
T h'c e’ —1 h’c e -1
It 1s convenient to express the photon energy as € = Af ——
_8aVh )
<U 2h3 3 jdff ﬂhf 1 C jdf ’ghf _1



u(f) (1072 J/m? /s™h)

f (1[]11 S_l)

Figure 7.20. Spectrum of the cosmic background radiation, as measured by the
Cosmic Background Explorer satellite. Plotted vertically is the energy density per
unit frequency, in SI units. Note that a frequency of 3 x 10t g1 corresponds
to a wavelength of A = ¢/f = 1.0 mm. Each square represents a measured data
point. The point-by-point uncertainties are too small to show up on this scale; the
size of the squares instead represents a liberal estimate of the uncertainty due to
systematic effects. The solid curve is the theoretical Planck spectrum, with the
temperature adjusted to 2.735 K to give the best fit. From J. C. Mather et al.,
Astrophysical Journal Letters 354, L37 (1990); adapted courtesy of NASA /GSFC
and the COBE Science Working Group. Subsequent measurements from this ex-

periment and others now give a best-fit temperature of 2.728 £0.002 K. Copyright



From NASA website --
https://wmap.gsfc.nasa.qgov/universe/bb tests cmb.html
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https://wmap.gsfc.nasa.gov/universe/bb_tests_cmb.html

Next —
What happens with Boson particles with a fixed number?
What happens with Fermi particles with a fixed number?



	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18

