PHY 341/641 Thermodynamics and
Statistical Mechanics
MWF: Online at12 PM & FTF at 2 PM

Record!!!
Discussion for Lecture 27:

Quantum effects in statistical mechanics

Reading: Chapter 7 (mostly 7.3)

1. Recap of statistical mechanics for photons
(blackbody radiation)

2. Statistical mechanics of Bose particles
3. Statistical mechanics of Fermi particles

4. Examples

4/05/2021 PHY 341/641 Spring 2021 -- Lecture 27 1



21

Mon: 03/22/2021

IChap. 6.1&6.5 IMinDCEI‘IDI‘IiCEl and canonical ensembles

22 \Wed: 03/24/2021 |Chap. 6.1-6.2 |Canonical distributions #18  |03/26/2021
23 |Fri: 03/26/2021  |Chap. 6.1-6.7  |Canonical distributions 6.49 |03/29/2021
24 |Mon: 03/29/2021 |Chap. 6.1-6.7  |Canonical distributions #20  |03/31/2021
25 \Wed: 03/31/2021 PP A & ChaP- o antum mechanical effects 421 (040212021
26 |Fri: 04/02/2021 Chap. 7.1-7.2 |Quantum mechanical effects

27 |Mon: 04/05/2021 |Chap. 7.3 Bose and Fermi statistics #22  |04/09/2021

Wed: 0470772027 |No class Holiday |
28 |Fri: 04/09/2021 |Chap.7.4 Bose and Fermi statistics
PHY 341/641 -- Assighment #22
April 5, 2021

Continue reading Chapter 7 in Schroeder .

This is an exercise illustrating the use of the Dirac delta function 6(x). Assume that all integrals are performed over the range of
-0 < x <= and that f(x) has values and zeros within the same range. "a" and "b" denote positive real numbers. valuate the
following integrals performed over the full range of x having the form | dx G(x) &(b-f(x)) where G(x) and f(x) are specified below:

1. G(x)=x and f(x)=ax

2. G(x)=x< and f(x)=ax
3. G(x)=x and f(x)=ax?
4. G(x)=x? and f(x)=ax?

4/05/2021
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4 PM

PHYSICS THURSDAY

COLLOQUIUM APRIL 8, 2021

“Can Next-Generation 6G Mobile
Communications Above 100 GHz

Find a Way to Coexist with Passive
Satellites Used for Weather and

Environmental Sensing?”

Radio frequencies above 100 GHz presently have little
actual use except for passive systems used for radio
astronomy and for satellite-based sensing of weather data
and pollution monitoring. But new technology and the
growing demands for terrestrial telecom such as smart
phones has resulted in growing needs for capacity in 5G
and 6G systems. Some of this capacity is expected to be .
above 100 GHz for policy decisions in the 1980s and 90s Dr. Michael J. Marcus
set aside many blocks of spectrum for purely passive
systems to a much greater degree than in lower
frequencies. A major challenge is thus how can we
shoehorn both uses into the same spectrum. Fortunately
the quirky nature of radio propagation above 100 GHz
offers some possible paths as does the small wavelengths
4/05/2021here that permit novel antenna-designs. Ihe talcwill o1 | ecture 27 4:00 pm
review possible building blocks of such a solution and Via Video Conference

R L [, I P T (N T A FR——

Marcus Spectrum Solutions, LLC
Washington, DC



Review: Blackbody radiation. Photons are spin 1 particles
which obey Bose statistics.

We learned that for Bose statistics, any number of particles

can occupy each state. For photons the total number of
particles 1s not fixed.  For a state of energy €. > 0, in thermal
equilibrium at temperature 7', the partial single particle partition
function 1s given by (S =1/kT)

1

l—e

Z (e, T)=D " =l+e +e v 4. = ——0

The partition function of the system combines the independent

contributions from all of the states s

Ziome M =[] Zi(€,.T) Z e (T)) = Zln( o)



Helmholtz free energy:

Fpo o T)==kTInZ, (T)= kTZ ln(l_e_ﬁes )

In practice, the state energies €, form a continuum

Z—> jd e g(e)  where g(e) denotes the density of states

87V e’
g(€) = PERE
87Z'V s\ 8V (KT)* ¢ .
(1 g )= PERE ja’xxz ln(l—e )
87Z'V(kT) '

= — T3 =U-TS
h’c 45




Bose statistics of blackbody radiation -- continued

87V (kT)* =

F(T)= =U-T1§
&) e 45
Further relationships --
G (GFj - 322VE'T’ #*
oT ), e 45
51,744
U:F+ST:87T Vi'T

15h°c



Comment on density of states

Electromagnetic modes within volume V=L3

yi hc 2 2 2
5 €=—\/n, +n, +n;

p :
/£ / for integers n,n ,n,

In the limit that L — oo,

e becomes continuous.

Note that g(¢) accounts

for two polarizations of

photons.
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hc

Energy for photon: €= 7 n + n +n’

Summing over all modes (n,.n,,n,) in continuum limit:

4/05/2021

} Let ¢g= \/ni +n2 +n’ jdnxjdnyjdnz = 47zjq2dq

g(e) @ﬂj q’dq 5(6 —hﬂj

2 polarizations
Note that j dx f(x) 8(a—x) = f(a)

B hcq B LY )
Letx = g(e)=2 47[(}!—0) jx dx &(e—x)
8V €
g(e)= PEpE V=0
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Comment on integrals over the Dirac; delta function
Note that for a smooth function G(x): j dx G(x) o(a—x)=G(a)

What about a more complicated integral such as

j dx G(x) S(a—bx") =2

Hint: Make a Taylor expansion of the argument of the delta function

1/5 4/5
about a —bx’ =0 a—bezO—i—(x—(%J JSb(%) +...
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The case of photon statistical analysis was simplified by the
fact that any number of photons can contribute to the system.
However, for particle systems, the number of particles need
part of the analysis.

Another way of evaluating a partition function for a Bose system:

Here we sum over all occupation numbers n, and energies €, .

For N particles, the occupation numbers have the condition

N = Z n, so that we can calculate the partition for

N particles -- Z(T,N). This is generally difficult, since
Z(T,N) 1s arapidly varying function of V.



Note that the following discussion follows the textbook
F. Reif, “Fundamentals of Statistical and Thermal Physics”
(1965)
Clever trick: Assume that Z(7', N) has an exponential variation with N
so that by choosing a parameter &z, we can form the so-called

"grand partition function"
ZGmnd (T)E Z Z(T7 N') e—aN’ ~ Z(T, N) e_aNW
=

where w 1s a numerically small value related to the width the peak of the

function at the maximum value of N. Taking the log --
In(Z,,,,(T)) = In(Z(T,N))~aN

Why is this a good idea?



Evaluating the Grand Partition Function for the Bose system

Z. (T)= Z Z(T,N") e ™"
~

— Z —(a+pP¢)n Z —(a+pfe)n, Z —(a+fe)ny
e 0N o2 e 77 ...

(1 ] ]
_\1_ o (@h) || 1o @the) || [ _plathe) |

=1n(Z,,,(T))= Zln( e “’))~In(Z(T,N))-aN

Obviously, o must depend upon N



Z. (T)= Z Z(T,N") e ™"
~

Peak of Z(T,N") e *" :
o(In(Z(T,N"))-anN')

=0
ON'
N'=N
on(Z(T,N
= n(Z(T, ))—a:O
ON

Recall that In(Z(T,N))=In(Z,,,..(T))+aN
Also recall that « 1s a function of N

OIn(Z(T,N)) _ oIn(Z,,,..(T)) da Joa
ON oo ON ON

Oln(Z T
= (Zorans (1) =N =>»Recipe for determining o

oo
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a ln (ZGrand (T))
o
For the case of Bose particles:

In(Zg,0a (T)) = Zln(l e«

oln(Z,;,,..(T)) g (P
aGa : = ZS: 1 e—(a+ﬂe _Z (a+ﬂe . = N

Relationship of @ with quantities we know.

=N

Recall that the chemical potential 1s given by

8In(Z(T, N
pC— n(ZTN) __rg
ON ON
= o =—pu

|
= ; eﬁ(es—ﬂ) 1 =N



Summary of results for Bose particles

ln (ZGrandBose (T’ lu)) = _Z ln (1 B e_ﬁ(es s )

1
ZS: Sl _1 N

When the energy levels of our system are continuous,
the summation over states s will change into the integral
of energies ¢ with the density of states function g(e).



Statistical mechanics of Fermi particles, analyzed using a

similar approach --
Introducing the chemical potential to evaluate the Grand Partition Function for

Fermi particles:
Z Grandrermi (L) = Z exp(—B(n, (e — 1) +n, (e, — )+ ny (& — p)...))

Here we sum over all occupation numbers 7, and energies e_.

For N particles, the occupation numbers have the condition
N = Z n,.

For Fermi particles n,=0 or n,=1 only
ln (ZGmndFermi (T)) — Z ln (1 + e_ﬂ(es i )

|
=N
;eﬂ(ﬁs—ﬂ) +1



Summary of results for Bose particles

ln (ZGrandBose (T’ lu)) = _Z ln (1 B e_ﬁ(es s )

1
ZS: Sl _1 N

Summary of results for Fermi particles
ln (ZGmndFermi (T)) — Z ln (1 + e_ﬂ(es i )

|
=N
Zsleﬁ(ﬁs—ﬂ) +1

Do you think that Fermi and Bose particles behave the
same at low temperatures?



Fermi distribution function
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