PHY 341/641 Thermodynamics and
Statistical Mechanics
MWF: Online at12 PM & FTF at 2 PM

Record!!!
Discussion for Lecture 28:

Quantum effects in statistical mechanics

Reading: Chapter 7 (mostly 7.3&4)

1. Summary of results concerning statistical
mechanics of Fermi and Bose particles

2. Examples of Fermi systems

3. Examples of Bose systems
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21 |Mon: 03/22/2021 |Chap. 6.1 & 6.5 |Microcanonical and canonical ensembles

22 \Wed: 03/24/2021 |Chap.6.1-6.2 |Canonical distributions #18 03/26/2021
23 |Fri: 03/26/2021 Chap. 6.1-6.7 |Canonical distributions 649 |03/29/2021
24 (Mon: 03/29/2021 |Chap. 6.1-6.7 |Canonical distributions #20 03/31/2021
25 |Wed: 03/31/2021 [52P- A & CN3P- oy jantym mechanical effects 41 04/02/2021
26 (Fri: 04/02/2021 Chap. 7.1-7.2 |Quantum mechanical effects

27 (Mon: 04/05/2021 |Chap. 7.3 Bose and Fermi statistics #22 04/09/2021

Wed: 04/07/2021 [No class Holida
28 |Fri: 04/09/2021 Chap. 7.3 & 7.4 |Bose and Fermi statistics #23 04/12/2021
PHY 341/641 -- Assignment #23
April 9, 2021

Continue reading Chapter 7 in Schroeder .

1. In class, we evaluated the Grand potential for an ideal Fermi gas in the limit that T is approximately 0 K. From this result,
we can estimate the internal energy U and the pressume P at very low temperature. Show that this estimate is consistent
with the results presented in Section 7.3 of Schroeder.
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Accumulated questions —

From Skye -- So when we are doing the taylor expansion, would the term
inside the block have a negative sign? Since the derivative f'(x) = -5b(n)*4

Comment — You are correct. There is a minus sign error in

the Lecture notes:
Orlg Inal: Hint: Make a Taylor expansion of the argument of the delta function

1/5 4/5
about a —bx’ =0 a—bx5z0+{x—(%j ]51)(%) +...

Corrected: Hint: Makea Taylor expansion of the argument of the delta function

1/5 4/5
about a—bx’ =0 a—bx5z0—£x—(%j JSb(%) +...

From Kristen -- 1.1 don't quite understand the purpose of the triplet of
positive integers (n) if you could elaborate on that | would appreciate it.

2. How is it that we can simply approximate the temperature T, to be zero?

3. Could you elaborate on what the Sommerfield expansion actually does?



Some results from last time
The Grand Partition Function for indistinguishable particles can be

written 1n terms of the chemical potential 1 :
Z rana (T') = Z exp(—f(n (¢ — 1) +ny(€, — 1) + ny(; — p)...))

Here we sum over all occupation numbers n, and energies e_.

For N particles, the occupation numbers have the condition

N=Zns.

For Fermi particles n,=0 or n,=1 only
ln (ZGmndFermi (T)) — Z ln (1 + e_ﬂ(es i )

|
=N
;eﬂ(ﬁs—ﬂ) +1



For Bose particles, the summation over ng is a geometric sum
resulting the analytic form:

In(Z,0napose (Ts 1)) = Zln( Bl )

|
ZS: S _1 N

Summary of results for Fermi particles
ln (ZGmndFermi (T)) — Z ln (1 + e_ﬂ(es i )

|
=N
;eﬂ(ﬁs—ﬂ) +1




Fermi distribution function

1
|

F(e)=
eﬂ(es

0 0.5 1 1.5 € 2
p=1
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Evaluation for an ideal gas of Fermi particles
Recall that Fermi particles have intrinsic half integer spin.
For example, electrons have spin s=1/2, so that each
spatial state can be occupied by 0 or 1 spin up electrons
and by 0 or 1 spin down electrons. Generally, the spin
degeneracy factor is given by (2s+1). To evaluate the
spatial states, for an ideal quantum gas, we can use
the cube of length L similar to the photon analysis.



Note that this a bit different from

L3=V

your textbook; _, < n,,. <o

. TN
Spatial energy for electron: € (nx +n, +n; )

e D2

Summing over all modes (n,.n,,n.) in continuum limit:

4/09/2021

J Let qz\/n§+ni+n22 jdnxj.dnyjdnz =47zj.q2dq

B , - h2q2
| g =R [qdq 5[6 szzj
Spin degeneracy
Note that j dx f(x) 8(a—x)= f(a)

2 .2
Letxzqu2 g(e)= 2472(sz) —j[dxé’e x)
m

2m 3/2
g(e)= 47[V£h ) Je v=_
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Evaluation of integrals --

ln (ZGmndFermi (T)) = Z ln (1 + e_ﬂ(es ! )

|
=N
geﬁ(%—ﬂ) +1

1 1
ZS: P >j de g(e) P

For T =0: Ideg(e) 47Z'V( j jdex/_

3/2
2}:?) %Iuyz =N

— 47Z'V(



Determination of chemical potential for T=0:

1
2

—N—>jdeg(e) =N
For T =0: jde g(e)=4rnV ( J

— i) +1 eﬂ(e—u) +1

2m 2 3n
= 4zV 2 =N
( e j 3

o) 2/3
e {2




What can we do with the Grand Partition function?

Summary of thermodynamic energies that we have studied
so far:

Internal: U(S,V,N) dU =TdS — PdV + udN
Enthalpy: H(S,P,N)=U+PV  dH =T1dS +VdP+ udN
Helmholtz: F(T,V,N)=U -8T  dF =-8dT — PdV + udN
Gibbs: G(T,P,N)=F+PV  dG=-5dT +VdP+ udN
Using the Legendre transformation, we can define a
thermodynamic energy measure that 1s a function of

the chemical potential instead of the particle number.

Such a energy 1s called by some texts as the "Grand potential”
Q(T,V,u)y=F—uN dC)=-8dT — PdV — Nd u



Properties of the "Grand potential"
QT V,u)=F—uN dC)=—-8dT — PdV — Nd u

oT v oV I ou vy

The canonical partition function Z(7,V, N)
is directly connected to the Helmholtz free energy

accordingto  F(T,V,N)= —len(Z(T, V,N))

—> The grand canonical partition function Z, . (T,V, 1)
1s directly connected to the Grand potential
accordingto  XT,V,N)=—kTIn(Z,,,,(T,V, 1))



Evaluation of the Grand potential:

QLY 1) = KT (Zg i (7)) = KT L In(1+€777)

=—KT [ de g(e)n(1+e ")

P(u—e) fore< u

ForT —0, f—>o0: ln(1+eﬁ(€~*“))z{ 0 X
or € > U

QT 0.V, 1) =~[ de gle)(u—e)

——47zV( j Ta’e\/_(,u €)

5 3/2 4
— _AgV ( mj T /15/2
h’ 15



Summary of results for an ideal Fermi gas of s=1/2 particles in
three dimensions evaluated in the limit that T>0 K

Evaluation of the Grand potential:

QT — 0.V, 1) =~[ de gle)(u~e)

——47Z'V( j Tdef(,u €)

3/2
=_471V (zmj % ﬂ5/2 jde g(€) Pl 1 =N

Properties of the "Grand potential"
QT V,u)y=F—-uN =U—-S8T —uN dQ =-8dT — PdV — Nd u

&, =@, {5,



Evaluating these functions for T>0

Evaluation of the Grand potential:

Q(T9 V’ /J) — _kT ln(ZGmndFermi (T))
=—kTId€ g(e)ln(1+e_ﬂ(€_”‘))

2}’}’2 3/2 5 |
— _4xV (h j ijdex/gln(l+e )

Convenient trick -- the following series of integrals are useful

fm(z)E% ! dx x° 1n(1+ze—x ) Z( "™ nj”

m=1
o0
Z m+1 z"
3/2

A, g
f3/2(Z)=Zde5/2( ) \/;_([dxx



TV, u)=—4nV @mj kT j de eln(1+e )

m
Z

4 % &
fi.(2) = = [dx x*In (1 L ze™ ) =3 (-1 ~
0 m=1

Let z = ™ x> = Pe

/2

Q(T,V,u)=—4rV (2}1’”) ij de e 1n(1+e—ﬂ<€—ﬂ>)

— 4y @’”j kT 2(kT)"” ffm(eﬂ“)

This approach is useful at high temperatures; for low
temperatures, further considerations are needed.
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