PHY 341/641 Thermodynamics and
Statistical Mechanics
MWF: Online at12 PM & FTF at 2 PM

Record!!!
Discussion for Lecture 30:

Quantum effects in statistical mechanics

Reading: Chapter 7 (mostly 7.5)
1. Statistical mechanics of lattice vibrations
2. Other Bose systems

3. Bose condensate
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4 PM

PHYSICS THURSDAY

COLLOQUIUM APRIL 15, 2021

“Programming with DNA
Outside Living Cells: From
Gene Circuits to Self-Assembly”

Cell-free transcription-translation (TXTL) has become a
highly versatile experimental environment to construct
biochemical systems /n vitro by executing either natural or
synthetic gene circuits. In particular, TXTL enables
interrogating biochemical systems quantitatively and in
isolation far from the complexity of real living cells. I will
present several experiments that my lab has done recently Al 4 i
using an all- £ coli TXTL system. First, | will present this o .

TXTL system, what it is, what it does. In the second part of Dr. Vincent Noireaux
my talk, | will show examples of dynamical systems
directed by gene circuits executed either in test tubes or
in microfluidic chips. In the last part of the talk | will show
how we construct synthetic cell systems using TXTL and
how synthetic cells are convenient to uncover and Minneapolis, MN
quantify fundamental aspects of supramolecular

assembly.

4/142021 PHY 341/641 Spring 2021 -- Lecture 30

School of Physics and
Nanotechnology (PAN)
University of Minnesota



21 |Mon: 03/22/2021 |Chap. 6.1 & 6.5 |Microcanonical and canonical ensembles

22 \Wed: 03/24/2021 |Chap.6.1-6.2 |Canonical distributions #18 03/26/2021

23 |Fri: 03/26/2021 Chap. 6.1-6.7 |Canonical distributions 6.49 |03/29/2021

24 \Mon: 03/29/2021 |Chap. 6.1-6.7 |Canonical distributions #20 03/31/2021

25 Wed: 03/31/2021 ?ﬂp A & Chap. Quantum mechanical effects #21 04/02/2021

26 |Fri: 04/02/2021 Chap. 7.1-7.2  |Quantum mechanical effects

27 [Mon: 04/05/2021 |Chap. 7.3 Bose and Fermi statistics #22 04/09/2021
Wed: 04/07/2021 |No class Holiday

28 |Fri: 04/09/2021 Chap. 7.3 & 7.4 |Bose and Fermi statistics #23 04/12/2021

29 Mon: 04/12/2021 Chap 7.3 _Fermi examples #24 04/16/2021

30 (Wed: 04/14/2021 |Chap. 7.5 Bose examples and lattice vibrations

31 [Fri: 04/16/2021  |Chap. 7.6 Bose condensation

32 Mon: 04/19/2021 |Chap. 8.1 Interacting particles

33 Wed: 04/21/2021 |Chap. 8.2 Spin magnetism

34 |Fri: 04/23/2021 Chap. 8.2 Spin magnetism

35 [Mon: 04/26/2021 |Chap. 8.2 Spin magnetism

36 \Wed: 04/28/2021 Review

37 |Fri: 04/30/2021 Review

37 |Mon: 05/03/2021 Review

38 Wed: 05/05/2021 Review

4/142021
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Your questions —

From Kristen -- 1. Could you highlight the difference
between high frequency and low frequency modes?

2. Do we approximate the cube using a whole sphere or
simply a quarter of a sphere as shown in figure 7.277

3. What does the Debye temperature represent physically?

From Noah -- Can you explain the actual meaning of n and
n_max? | am having trouble understanding it's physical
meaning in crystals and the waves shown in Figure 7.26.

Comment — We will analyze the equations in a somewhat
different way by first introducing the notion of density of
states for the phonon modes, similar to the treatment of
iIdeal gasses as we did previously.



What do vibrations have to do with Bose statistical

mechanics?
1. Nothing.
2. Similar mathematics.
3. Physicists never are will to let a beautiful equation

go unused.

Image of equilibrium
geometry of crystal:
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In practice, each of the 3N atoms in the crystal oscillates about
its equilibrium position with various characteristic
frequencies »'(k) depending on wavevector k mode number v.

For each mode o" (k)

there 1s a harmonic

oscillator potential with \ [

quantum mechanical

eigenvalues 7" (k)(n+7) \ /

forn=0,1,2,.... \ /




In this case, the quantum numbers for each mode
n=0,1,2... are not constrained so that the canonical partition
function can be evaluated and it is a good approximation to
assume that mode v at each wave vector k is independent --

Z(T) = HH[ e <k><"+%>j
v k n=0
e—ﬂha)" (k)/2

F(T)=—kTIn(Z(T))= Z[hw;(k) AT In(1—e 7 ® ))

vk

;[kT ln[Z sinh('g L “; (k)m

Note that even at T=0, vibrations contribute to the Helmholtz
free energy. This is called zero point motion.




Thermodynamic functions for vibrations

F(T) = Z(hw &) kr ln(l—eﬂhwv(k))]

_ (OF ) _ oo . Ho"(K) 1
S B

vk 1—8

U(T)=F(T)+TS = Zk: (ha) (K) G + -~ e_ihwv ™ D
4 \

oU 1 2 MM
T "(k
AT = (8Tj szél (ha)( )) (eﬂth(m_l)z)
\

Note that at high T such that f7w" (k) << 1 for all modes,
C,(T >x)~k) (1)=3Nk
vk




How can we evaluate these quantities? Again, it is
convenient to calculate the density of states for the
vibrational modes. For this various units can be used for
the vibrational frequencies such as the following --

In practice, it 1s convenient to express frequencies in wavenumbers:

a

i~

) =

(cm™) with F,(T)=[dd f,,(&,T)
0

27ce

where the weighted phonon DOS factor is

heés )
(o, T)=k.T In| 2sinh @
Join( ) B ( {2kBTJJg( )

Here g(w)= (22)3 zjd%ﬁ(ﬁ)—@v (k)) with Idc?) g(w)=3N

4/142021 PHY 341/641 Spring 2021 -- Lecture 30 9



Plot of lattice vibration modes for diamond plotted for various

wavevectors hios:/h fri-berlin.mpg.de/th/Meetings/DF T-workshop-Berlin2009/Talks/OnlinePublication/0630-
4T 20090630-1 FH - phonon tutorial talk web.pdf

elix Hanke & Martin Fuchs T foNoN dispersion relation
June 30, 2009 Diamond

fcc conventional cell
2 atoms per primitive cell
= 6 phonon branches

optical branches

1500 // 1500
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3
a; -
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k-vector

acoustic branches
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https://th.fhi-berlin.mpg.de/th/Meetings/DFT-workshop-Berlin2009/Talks/OnlinePublication/0630-4T_20090630-1_FH_-_phonon_tutorial_talk_web.pdf

g(e) plots from previously cited presentation showing how the
density of states is very sensitive to volume (lattice constant)

diamond

Density of states

|
0 500 1000 1500
: 1
Phonon frequency o (cm )
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Heat capacity: ¢y

Computed from free energy From Hanke & Fuckes
| ds 82F (Continued)
Cv(T) = TﬁV:_TWV
_ o (w)? exp(hw/ksT)
- f dw (W) (exp(hw/kpT) — 1)2
= 6
O
St
= 4F
S L
= 2
2
ﬁ'llllllll_diamo_nd'
< 00 1000 2000 3000

Temperature (K)
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Example from a recent paper by graduate student Yan Li

» Some details of the vibrational stabilization at

WAKE FOREST

UNIVERSITY

T=300K for L|4P Se and Na4P Se |n C2/m structure
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Representation of the phonon modes

S I
e U.};: {I'-}'j
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Na®t 0~300cm™’
(P.Sg)4  300~600 cm-T

Suggested path: Hinuma et al., Comp. Mat. 5ci. 128, 140-184 (2017)
’Li et al,, L Phys. Condens. Matter, 32, 055402 (2020)
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Helmholtz free energy: F=Ug + F,,

T ' | ' T ' ' 1 - - T - |
P3m1 |
—(_'.2_‘."[11 ]
= = P31m
= =
= = 0.5
3
N S 0w
3 Ll = -
=~ <3 ':‘%‘ 0
05" =
300 400 500 0
T (K) T(K)
Usy: P3m1=C2/m < P31m Ug: P3m1 < P31m < C2/m
Fip: C2/m < P3m1 = P31m F,: C2/m < P3m1 = P31m
B Fiowes: C2/m (expt."?) ) F ..t P3m1 (expt.?)

'Wuhn et al., Z. Anorg. Allg. Chem. 640, 689-692 (2014)
2Hood et al., J Solid State lonics 284, 61 (2016)
*Neuberger et al., Dalton Trans. 47, 11691-11695 {2018)

In this study, the estimate of the phonon contributions to the
Helmholtz free energy helped explain why the two similar
materials take different structural forms at room temperature.
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Back to the general equations

Calculation of the heat capacity:

( )
1 ) eﬂha)V (k)

Co(T) = 2 (ho" (%)) eﬂW<k>_1)2
\ J

Introducing density of states:

g(e) = (2 ; ~V(k)) with Idé g(e)=3N
1 5 ee’
CV(T)_kT20 (eﬂe_lz



Debye model to approximate g(¢)
Based on the notion that at low frequency (&) the
vibrations behave like sound waves through the
material with a characteristic speed c. (Note that this is
the speed of sound not light!!!) In more detail sound
waves in different directions of the material can have
different speeds, but we will characterize the average
by c.

Density of states for Debye model

[ 3V¢?
gp(€)=127°n’c’
0 for e > kT,

for e < kT,

kT,

where j g,(e)de =3N kT, = 27zhc(
0

3N 1/3
4%Vj



Evaluation of heat capacity in the Debye model

e’ I T A et
C,.(T)= de o(¢ z de
(1) = szj g( )( _1)2 T2 212 :‘)‘ (eﬂe _1)2
T,/T 4 x 1/3
= k*'T° 32V3 - j dx —° ~ Where kT, = 27zhc( SN j
2r°he” v (ex _1) 4V

(2] e e
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Some typical values of T

4/142021

_ Materal | T, (K

Na (metal) 150
C (diamond) 1860
Fe (metal) 420
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