
PHY 341/641 Thermodynamics and 
Statistical Mechanics

MWF:  Online at 12 PM & FTF at 2 PM

Discussion for Lecture 30:
Quantum effects in statistical mechanics 

Reading: Chapter 7   (mostly 7.5)

1. Statistical mechanics of lattice vibrations

2. Other Bose systems

3. Bose condensate

Record!!!
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4 PM
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Your questions –
From Kristen -- 1. Could you highlight the difference 
between high frequency and low frequency modes?
2. Do we approximate the cube using a whole sphere or 
simply a quarter of a sphere as shown in figure 7.27?
3. What does the Debye temperature represent physically?

From Noah -- Can you explain the actual meaning of n and 
n_max? I am having trouble understanding it's physical 
meaning in crystals and the waves shown in Figure 7.26.

Comment – We will analyze the equations in a somewhat 
different way by first introducing the notion of density of 
states for the phonon modes, similar to the treatment of 
ideal gasses as we did previously.
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What do vibrations have to do with Bose statistical 
mechanics?

1. Nothing.
2. Similar mathematics.
3. Physicists never are will to let a beautiful equation 

go unused.

Image of equilibrium 
geometry of crystal:
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In practice, each of the 3N atoms in the crystal oscillates about 
its equilibrium position with various characteristic
frequencies ων(k) depending on wavevector k mode number ν.
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In this case,  the quantum numbers for each mode
n=0,1,2…  are not constrained so that the canonical partition 
function can be evaluated and it is a good approximation to 
assume that mode ν at each wave vector k is independent --
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Note that even at T=0, vibrations contribute to the Helmholtz 
free energy.   This is called zero point motion.
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Thermodynamic functions for vibrations 
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How can we evaluate these quantities?   Again, it is 
convenient to calculate the density of states for the 
vibrational modes.   For this various units can be used for 
the vibrational frequencies such as the following --
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Plot of lattice vibration modes for diamond plotted for various
wavevectors  https://th.fhi-berlin.mpg.de/th/Meetings/DFT-workshop-Berlin2009/Talks/OnlinePublication/0630-
4T_20090630-1_FH_-_phonon_tutorial_talk_web.pdf

https://th.fhi-berlin.mpg.de/th/Meetings/DFT-workshop-Berlin2009/Talks/OnlinePublication/0630-4T_20090630-1_FH_-_phonon_tutorial_talk_web.pdf
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g(ε)   plots from previously cited presentation showing how the 
density of states is very sensitive to volume (lattice constant)
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From Hanke & Fuckes
(continued)
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Example from a recent paper by graduate student Yan Li
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Representation of the phonon modes
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In this study, the estimate of the phonon contributions to the 
Helmholtz free energy helped explain why the two similar 
materials take different structural forms at room temperature.



4/142021 PHY 341/641  Spring 2021 -- Lecture 30 16

Back to the general equations
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Debye model to approximate g(ε)
Based on the notion that at low frequency (ε) the 
vibrations behave like sound waves through the 
material with a characteristic speed c. (Note that this is 
the speed of sound not light!!!)    In more detail sound 
waves in different directions of the material can have 
different speeds, but we will characterize the average 
by c.
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Evaluation of heat capacity in the Debye model 
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Some typical values of TD

Material TD (K)
Na (metal) 150

C (diamond) 1860
Fe (metal) 420
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