PHY 341/641 Thermodynamics and
Statistical Mechanics
MWF: Online at12 PM & FTF at 2 PM

Record!!!
Discussion for Lecture 32:

Recap of Bose condensation; Treatment of particle
interactions in statistical mechanics
Reading: Sections 7.6 and 8.1

1. Recap of Bose condensate

2. Treatment and effects of interparticle interactions
in statistical mechanics
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[Fri: 04/09/2021

Chap. 7.3 & 7.4 |Bose and Fermi statistics #23  04/12/2021
29 (Mon: 04/12/2021 |Chap. 7.3 Fermi examples #24  104/16/2021
30 Wed: 04/14/2021 |Chap. 7.5 Bose examples and lattice vibrations
31 |Fri: 04/16/2021 __|Chap. 7.6 \Bose condensation | |
|‘32 Mon: 04/19/2021 |Chap. 7.6 & 8.1 ||Interacting particles #25  04/21/2021
33 Wed: 04/21/2021 |Chap. 8.1 Interacting particles
34 |Fri: 04/23/2021  |Chap. 8.2 Spin magnetism
35 Mon: 04/26/2021 |Chap. 8.2 Spin magnetism
36 \Wed: 04/28/2021 Review
37 |Fri: 04/30/2021 Review
37 Mon: 05/03/2021 Review
38 \Wed: 05/05/2021 Review
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PHY 341/641 -- Assignment #25

April 19, 2021

Complete Section 7.6 and start reading Section 8.1 in Schroeder .

Suppose that you have an ideal Bose gas of 87Rb atoms with a number density of 2.5 x 1020 atoms/m?. Each atom has a mass
of 1.44 x 1020 kg. Other constants that you may want to use for this problem are the Boltzmann constant of k=1.380649 x 1029

JIK and Planck's constant of h=6.62607015 x 103 J 5. Additionally, you will need to evaluate the function that we defined in
class whose integral can be evaluated with software (Maple, Mathematica, etc.) or it can be evaluated from a convergent infinite

Series Qyp(2)=Y m=1" 2T M

1. Find the critical temperature T, for forming a Bose condensate in this system.
2. Find the chemical potential for this system at 7=0.00001 K.
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Some review of Bose condensate -- Bose particles are
characterized by integer intrinsic spin. In the following we
will assume s=0. They have the property that there are no
restrictions on the occupancy of each single particle state.
Therefore, there is the possibility that there can be a
macroscopic number of particles occupying the ground
state (in our case at ¢,=0)

For temperatures below the critical temperature 7, there are
N, particles 1n the ground state and the sum rule for the total
number of particles of the system (1deal Bose particles in a

three dimensional box of volume V') 1s

o0 1 3/2
N =N, + [ deg(e) ey Where g(e)=2a/ @—Tj Je
O+



It 1s convenient to use the notation z = em’

At the critical temperature T, N,=0 and z=1 for O <T < T,

2amkT Y
N_V( e cj 83/2(1)

2xmkT

For O<T<7’—e>N;N’+V(

3/2
No | L
N T

j g3, (1)



ForT>T, N,=0andz<1I:

2rmkT
h2
u=kTn(z)
Note that y=0for 0<T<T
u<0tor T'>T,

32
N:V( j g,,(z) forz<l

Behavior of Bose gas for T >>T,

3/2 )
N( &’ 2, z/

z) = where Z) =
g3/2( ) V(Zﬂkaj g3/2( ) ]Z::‘jm




Behavior of Bose gas for 7' >> T,

3/2 :

N h? >, z/
where z) =

vV \ 272mkT 832(2) Z‘j”

gy,(2) =

()

0 0.2 04 - 0.6 0.8 1
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N h2 3/2
For 1" >> 1, zZ R ( j

V\ 2rmkT
3/2
u=kTInz~—kTIn V ( 2zmkT Result for classical
N h’ onoatomic ideal gas!

TT(;K)
01 02 03 04 05°06 0.7 08 09 1.0

~0.0002-

’ For 8’Rb at N/VV=2.5x10%°m-3
—~—-0.0006-

=
)

Z-0.0010-

~0.0014-
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Your questions on Chap. 8

From Kristen -- 1. Why does the momentum (p) not appear in the first term
of equations 8.2 and 8.47 2. What is the Mayer f-function explicitly? 3. |
understand where B(T) comes from mathematically, but does it have any
physical representation outside of the formula?

From Rich -- What are the u0 and r0 constraints used in the equation 8.37?

From Michael --Our book mentions a symmetry factor, | was wondering if

you could please expand on this a little bit, about what exactly it is and how we
find it?



Up to now, we have focused on systems that can be well
described as independent (non-interacting) particles.
More realistically, particles do interact. Typically this
iInteraction can be described in terms an interacting
potential energy term. As an example, we will consider a
gas of N monoatomic atoms of mass m treated using
classical mechanics .

The classical Hamiltonian of the system has kinetic energy
2

N
and potential energy contributions: 9‘6=Z P +O(r,1,..)

o 2m .

We have been ignoring this term



Some typical potential interactions

Coulomb interaction

g 1
CD(|r1 r2|) dre, |r1—r2|
/ > Lennard-Jones interaction
12 6
| | CD(|r1—r2|):CD0£ o j—2£ o j
In practice, potential |l’1 —l’z| |1’1 —l’z|

Interactions can involve
more than 2 particles ,
and can be angularly O(fr, -1, = D¢ 1 4 I

dependent. 4re, r, -1,

Born-Mayer potential
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The Lennard-Jones pair potential does a good job of
describing the interaction between rare gas atoms.

Repulsive interaction

at short range
w(r) A

o 210
| | -

| Dipole-dipole attraction

at long range




Measured Lennard-Jones parameters for some rare gas
atoms (Ref. Ashcroft and Mermin, Solid State Physics)

| Ne | A Kr_| Xe _

Up (eV) 0.0031 0.0104 0.0140  0.0200
r, (Angstroms) 3.08 3.82 4.10 4.47

O(r,,1,...) = Z ¢pair(

pairs (i)

l

r —rj|)
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Classical canonical partition function for gas of particles of
mass m in the presence of an interaction potential

Z(T,V,N)= Jd3rd3r dr,d’pd’p,.d’ p,e”’

N' 3N

2

‘?(7(171 +(D(r19r2“)
Z(T,V N) ka(T V,N)YZ (T,V,N)

pot

Z, (T, V,N)=

N'thj d3pld3p2 d3pN e

_ VN (2amkT
N h’




Evaluation of the potential contributions --

1 —O(r,,1; ..
Z,(T,V,N) Eﬁjd3lfld3r2..d3r]ve prin.)

O(r,r,. )~ Y (6 -1
pairs (ij)
ZPOZ(T,V,N) zLN .d3l’1d3l”2..d3l”N H e—ﬂ¢pair(|ri—rj|)
Ve pairs(ij)

~

Suppose that e "

o) =1+ fij f = e_wmrqri_rjb —1= _18¢pair(
Then [T ™0 = (14 £,) (14 £3)o-(14 £ ) (14 i 1)

pairs i)
=1+ Y fo D fofu e

pairs(ij) pairs(ij ,kl)

I, —rj‘)



Evaluation of potential terms continued --

(T V N) ~_J‘d3rd3r d3 H e_ﬂ¢pair(|l‘l-—rj|)

pm pairs(ij)
=Z, (T,V,N)Y+Z23" (T,V,N)+Zn" " (T,V,N)+...
Z0 (T,V N)——_[d3rd3r d’r, =1
airs 1 N N 1
Zr(T,V,N) :V_N j &rd’r,.d’ry, Y. f, == ( ) j d’rd’r, f,

pairs(ij)
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