PHY 341/641 Thermodynamics and
Statistical Mechanics
MWF: Online at12 PM & FTF at 2 PM

Record!!!
Discussion for Lecture 36:

Review Part 1

1. Overview

2. Variables and functions of thermodynamics

3. Various macroscopic and microscopic
viewpoints
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28 Fri: 04/09/2021  Chap. 7.3 & 74 |Bose and Fermi statistics 423 0411272021

29 Mon: 04/12/2021 |Chap. 7.3 Fermi examples #24  |04/16/2021

30 (Wed: 04/14/2021 |Chap. 7.5 Bose examples and lattice vibrations

31 [Fri: 04/16/2021  |Chap. 7.6 Bose condensation

32 Mon: 04/19/2021 |Chap. 7.6 & 8.1 |Interacting particles #25  |04/21/2021

33 Wed: 04/21/2021 |Chap. 8.1 Interacting particles #26  |04/23/2021

34 Fri: 04/23/2021  |Chap. 8.2 Spin magnetism

35 Mon: 04/26/2021 |Chap. 8.2 Spin magnetism

36 Wed: 04/28/2021 Review
37 |Fri: 04/30/2021 Review ]
37 Mon: 05/03/2021 Review
38 |Wed: 05/05/2021 Review

Important dates: Final exams available < May 6; due May 14
Outstanding work due May 14
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Review 1 & 2 Summary of concepts/equations
Review 3 & 4 Examples

Timelines —
May 5 — Review 4 & take home exam available
May 14 — all course materials due; outstanding
homework, and completed exams

Please note that the complete lecture slides are posted
on the course webpage and the zoom recordings are
available on the shared google drive.



Colloquium this week is joint with Chemistry on Wed. at 4 PM

Chemistry Department Seminar

Joint Seminar with Physics
Wednesday, April 28, 2021 at 4 P.M.

Dr. Miles Silman

Professor of Biology

Andrew Sabin Family Foundation Professor of
Conservation Biology

Director, Center for Energy, Environment, and
Sustainability

Wake Forest University

The electromagnetic spectrum and
carbon nanomaterials in Andean
and Amazonian conservation

Dr. Silman received a B.S. in Biology from the University of Missouri
and his Ph.D. in Zoology from Duke University.
His primary interests are community composition and dynamics of
Andean and Amazonian tree communities in both space and time. The
lab’s current research focuses on combining modern- and

aleoecology to understand tree distributions and plant-climate :
relatlnnshigsyin the Andes and Amazon. : Depanmem of BID|Dgy’
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Variables of thermodynamics
d Temperature — T > 0 in Kelvin scale

d Volume — V in units of m3

A Pressure — P in units of Pascals (Newtons/m?)
4 Entropy — S in units of Joules/K

d Mass — M in units of kg

d Number of particles — N

1 Chemical potential — p in units of Joules



Various thermodynamic functions and their interrelationships
Internal energy U=US,V,N) dU-=T1dS—-PdV + udN
1

Entropy S=SU,V,N) dS:?dU+§dV—%dN

Enthalpy H=H(S,P,N)
Helmholtz free energy F =F(T,V,N)
G1bbs free energy G=G(T,P,N)
Grand potential Q=Q(T.,V,u)

Using the Legendre transformation method:
H(S,P,N)=U+PV dH=TdS +VdP+ udN
F(T,V,Ny=U-ST  dF =-58dT —PdV + udN
G(IT,P,N)=F+PV  dG=-5dT +VdP + udN
QT,V,u)=F—-Nu  dQ=-8dT - PdV — Nd u



Summary of thermodynamic functions

= TdS — PdV + udN

1

as=Lau+Lav _Fan
T T T

=1dS +VdP + udN

—S8dT — PdV + udN
—SdT +VdP + udN
—SdT — PdV + Nd u

Internal energy U=U(S,V,N) dU
Entropy S=SU,V,N)
Enthalpy H=H(S,P,N) dH
Helmholtz free energy F =F(T,V,N) dF =
Gibbs free energy G=G({I,P,N) dG-=
Grand potential Q(T,V, 1) dQ =
Some first derivative relationships --
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Note that these relationships are in principle general,
describing both the macroscopic and microscopic aspects
of our thermodynamic systems. While all of the
thermodynamic potentials are valid in general, there is
usually one function that most expedient for a given
situation.

The system that we spent a lot of time on is the mono
atomic ideal gas.



Microcanonical ensemble for a mono atomic ideal gas.
Here we have N particles of mass M in a volume V and
internal energy U. Note that in the this and some following
slides Q2 denotes the microcanonical multiplicity function.

Microstate: the "distribution" of particles in phase space:

— D({Qi "'%N}a{pi "'p3N}9t)
Macrostate multiplicity based on total ("internal") energy U :

d"qd* pD({q,}.{r.})s(H ({a.}-{p})-U
f q % q, p'( ‘61 p )

Hamiltonian

Q(N,U) =

h3N N!
Phase space

density, taken
to be constant

Dirac delta
function



Since the atoms are in a box of volume V:
3N N
I d"g=V

For an ideal gas with N atoms of mass M.
1 3N
H({g, N=—xu» p’
(g }-Ap}) =5, 2P

Impose constraint that the only non-trivial contributions
1 3N

come from WZ p. =U. In order simplify the mathematics,
i=1

first perform an intermediate calculation for

X(N,U) zjd”p ®(U—H({%}‘a{l’i}))



dO(x—a)

o(x—a) <
dx
delta step
function function

Define a radial variable for the 3N momentum space

3N
p=2p
i=l1

X(N,U)=jd3NP(”)(H({qz‘}’{pi})_(])
2mU
=_[ (angular part) j dp p

3N-1

)3N/2

(2zMU
B Special mathematical function

F(STNJ « I'(n) =(n—1)! for integer n
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When the dust clears --
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Boltzmann's idea was to use the multiplicity function

to calculate the entropy --
S - kB ln(Q(Na V: U))

VN 72_3N/2 IN
QIN,V,U) = MU
NP = M)
(v (4zmUY"” L) Using Stirling
TN 3 ) € approximation

N\ 3NK’ " 5 | equation

S(N,V,U)~ Nk [ln£V(47TMUT/2] 5] Sachur-Tetrode
o7 o ~ B



Helmholtz free energy for monoatomic ideal gas

For monoatomic 1deal gas --
Equation of state: PV = Nk, T

Internal energy: U= %NkBT
V(4zMUN") 5
Ent ; S=Nk,|1 + —
oY B(HEN( 3NK j J 2}
V (2xMNk,T\"
Helmbholtz: F=U-TS=-Nk,T| In — +1
N Nh

3/2
Helmholtz 1 u= (a—Fj =—k,T| In 4 (ZEA{kBTj
ON ), N h



Gibbs free energy for monoatomic ideal gas

[We have only worked out the entropy for this case.]
For monoatomic 1deal gas --

Equation of state: PV = Nk,T

Internal energy: U = % Nk,T
V(4zMUY" ) 5
Entropy: S =Nk.|In L2
py B{ (N( 3N j } 2}
3/2
Gi1bbs: G=U-=-TS + PV = _NkBT In 4 (27TM]\]2kBTj
N Nh

3/2
—NKT|In k,T (27zMZkBTj
P h

3/2
Gibbs ;= (8_(?} =k, T| In kBT(Zﬂ]WszTj
ON )7 p P h




One further comment about chemical potential using ideal
gas example

3/2
Gibbs: G =-Nk,T| In kpl' [ 22Mh, T =G(T,P,N)
B P h2
3/2
Gibbs 1: u= (2—5) = —kBTEInLk;T (277];1421‘3Tj B = u(T, P)
T,P

Also note that G(T,P,N)=Nu(T, P)

Note that all of these results were derived from a knowledge of
the entropy of our microcanonical mono atomic ideal gas



Now, we would like to extend the analysis of an isolated

system to
within the
ensemble

that of a system within a heat bath. The system
heat bath will be analyzed in terms of a “canonical

Canonical ensemble:

Ay
Ay
Ay
Ay
SRR oy
A ] A AT LAy
o N AT LA
S O 2 B A A
Ay
Ay
Ay
N = = N
A s
A s
A s
A s
A s
A s
A s
A s

ottt ottt

i e e e e e
e e e e e
e e e e e
e e e e e
e e e e e
e e e e e
e e e e e
e e e e e
e e e e e
e e e e e
e e e e e
e e e e e

B e P N Tty
e e e e e e e e e e e e e e e e e e e e e e g e e

B e P N Tty
e e e e e e e e e e e e e e e e e e e e e e g e e

4/28/2021 PHY 341/641 Spring 2021 -- Lecture 36

17



In this case, we argue that the probability # of our system being in state

s depends on the internal energy U and the bath temperature 7, :

| .. . _
P = 2(T) g Us'kals where the "partition" function is Z(7,) = Z g Uslksls
b S
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This enables us to determine the "canonical" average of system properties.

For example, the average internal energy of our system 1s given by

— Q@ _ 1 —U,/kgT,
(U)=>UZ = 202 Ue

S

Interestingly, the average Helmholtz free energy is given by
(F)=(U)-T(S)=—k,T, n(Z(T,))

Evaluating the canonical partition function for the N particle

mono atomic i1deal gas

Z(T) Ze—U /KT

—Z P2/ (2mkT)

th' |&rd’r,..d’r, [d* pd’p,..d"py e

N 0 3N N
r [ _[ dpxe”’%/(zmmj = r (271ka )3N/2

VN - YN



Analysis of a canonical ensemble for a mono atomic ideal gas

%

3

3/2
—kTN[ln(;(zﬂZZkT] J+1j

3/2
o () —uf L(2mmir ).
oT )y, N & 2

U:F+TS:%NkT

In N —1)

F(T,V,N)=—-kTN ln(
Stirling approx.

(27zka )3/2 j + kTN

() i
oT )y, 2
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Analysis of a canonical ensemble for a mono atomic ideal gas
-- continued

F(T,V,N) ——kTN£ln(V(2ﬂkaj }rlj

NU &

Chemical potential --
3/2
e (8_Fj il ¥ (27[11;ij
ON ), N\ h

Note that these results are for a classical ideal gas without
internal degrees of freedom.  Additional considerations are
needed when considering internal degrees of freedom
and/or quantum particle (Fermi or Bose) effects.




Possible topics for next time —
1. Effects of internal degrees of freedom for classical
ideal gas
2. Bose or Fermiideal gas; grand partition function
3. ldeal gas systems in thermodynamic cycles (heat
engines and refrigerators).
Magnetic/spin systems
Phase transitions and chemical reactions

o A
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