PHY 341/641 Thermodynamics and
Statistical Mechanics
MWF: Online at12 PM & FTF at 2 PM

Record!!!
Discussion for Lecture 38:

Review Part 3

Ideal gas containing a mixture of particles
Effects of particle interactions

Phase equilibria

N

Chemical equilibria
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28 Fri: 04/09/2021  Chap. 7.3 & 74 |Bose and Fermi statistics 423 0411272021

29 Mon: 04/12/2021 |Chap. 7.3 Fermi examples #24  |04/16/2021

30 (Wed: 04/14/2021 |Chap. 7.5 Bose examples and lattice vibrations

31 [Fri: 04/16/2021  |Chap. 7.6 Bose condensation

32 Mon: 04/19/2021 |Chap. 7.6 & 8.1 |Interacting particles #25  |04/21/2021

33 Wed: 04/21/2021 |Chap. 8.1 Interacting particles #26  |04/23/2021

34 Fri: 04/23/2021  |Chap. 8.2 Spin magnetism

35 |Mon: 04/26/2021 |Chap. 8.2 Spin magnetism

36 \Wed: 04/28/2021 Review
37 |Fri: 04/30/2021 Review
37 (Mon: 05/03/2021 Review
38 (Wed: 05/05/2021 Review

Important dates: Final exams available < May 6; due May 14
Outstanding work due May 14
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Generalizing the thermodynamic functions for a single
component system --

Internal energy U=U(S,V,N) dU=TdS—-PdV + udN

Yav+Lay_Han
T T T

Enthalpy H=H(S,P,N)=U+PV dH =TdS+VdP + udN
Helmholtz energy F=F((T,V,N)=U-S8ST dF =-5dT —PdV + udN
Gibbs free energy G=G(T,P,N)=F+ PV dG=-8dT +VdP + udN

Entropy S=SWU,V,N) dS=

It 1s useful to consider systems containing several components
N —> N,,N,,..... where N, denotes particles of type "i". For
the moment, we are assuming that no reactions (chemical,

nuclear, etc.) occur.



Generalizing thermodynamic functions to multi-component

systems -- It is useful to consider systems containing several components
N — N,,N,,..... where N, denotes particles of type "i". For
the moment, we are assuming that no reactions (chemical,

nuclear, etc.) occur.

1 P |
Entropy: S(U.V.N,.N,...) dS=—-dU+—dV - Z%dNi where T(G—Sj
I UV AN, j#i}

| aNi SV N, j#i} 8Ni S,P{N,j#i} aNi TV {N,j#i} 5Ni T,P{N;j#i}

Internal energy U=U(S,V,{N,}) dU=TdS—PdV+) udN,

Enthalpy H=H(S,P,{N,})=U+PV dH=TdS+VdP+) pudN,

Helmholtz energy F =F(T,V,{N,})=U—-ST dF = —SdT—PdV+Z,ul.le.

Gibbs free energy G =G(T,P,{N,})=F+PV dG=-SdT +VdP+)_ udN,

:lLli



Thermodynamics of mixing -- first consider a two-component
(binary) system  N,=N(7-x) Ng=xN
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Figure 5.24. A collection of two types of molecules, before and after mixing.
Copyright (€)2000, Addison-Wesley.

Separated system
G(T,P,N,x)=(1-x)G (T,P,(d=x)N)+xG,(T,P,xN)

Mixed system depends on details of system even if no
chemical reactions occur.
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Possible mixing behaviors.

Consider the case of the monoatomic ideal gas for which we
derived the Gibbs free energy expression:

3/2 5/2
G(T,P,N)—NkT(ln(kPT(zﬂMij J}—Nlen(TP jJrGO

hZ

P independent
constant

For binary example -- system  N,=N(1-x) Ng=xN

For the case of separated gases, both at pressure P :

T5/2
P

separated ~—

G ——Nlen( ]+(1—x)GOA+xGOB



Notion of partial pressure when the gases are mixed -- P, +P, =P
P =(1-x)P P, =xP

T5/2 T5/2
G . . =—(1-x)NkT In — xNkT In +(1-x)G, , +xG
mixed ( ) ((1-.}6)1)] [ )CP ] ( ) 0A4 0B
G ised — Oseparatea = NkT((l—x)ln(l—x)+x1nx)
Also note that S

mixed ~ " separated ~

oT

S _ { 0 (Gmixed B Gsepamz‘ed ) ]
P,N,x

— —Nk((l—x)ln(l—x)+xlnx)



|ldeal mixing of binary system --

G

[~ GE; ﬂ“Ir—:;rniy-cirlg

No mixing

Ideal mixing

0 T— 1 0 L —— - 1

Pure A Pure B Pure A Pure B

Figure 5.25. Before mixing, the free energy of a collection of A and B molecules
is a linear function of x = Ng/(Ns + Np). After mixing it is a more complicated
function; shown here is the case of an “ideal” mixture, whose entropy of mixing
is shown at right. Although it isn’'t obvious on this scale, the graphs of both
ASmixing and G (after mixing) have vertical slopes at the endpoints. Copyright
(2000, Addison-Wesley.
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-Gz Given this plots, which
configuration is more favorable?
a. Aand B separate

b. Aand B ideally mixed

No mixing

[deal mixing

0 T —- 1

Pure A Pure B

Question —

What might the analysis of the mixing differ for the
Helmholtz free energy?



What physics is the ideal gas model missing?

N
ldeal Z
=1
. \
real Z | 19r2""rN)
=1

« At low density, pairwise potential effects can be estimated
In terms of the virial coefficient

* More generally, the potential effects can be treated with
iIdealized models or numerically



Properties of matter due to particle interactions
1. Different phases of matter
a. Gas Have discussed ideal gas and dilute gas approximations

b. LlC]Uld Difficult for quantitative treatment
c. Solid (including various crystal forms)

? Reasonable analysis near equilibrium possible
2. Reactions between particles

» Will discuss equilibrium reactions next time

Thermo(static) analysis follow from the notion that at
equilibrium, the thermodynamic potential function take its
minimum value.
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Treatment of the thermodynamics of lattice vibrations

Image of equilibrium
geometry of crystal:

pl |

m

N
real Z
=1

At equilibrium, {r,,r,...

Near equilibrium, #_, —

5/3/2021

)
0
N
|p | 0y, | 0y O°D 0
Z—+CD(rl,r rN)+_Z(1}_1}- ) -(rj—r])
=1 <M, 2 ij 61‘1.51'].
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Near equilibrium, $€_, — Z|p | ( ....rﬁ)+%2(1~i_1}0).8
o 2m, e r.or

Note that thanks to the Born-Oppenheimer approximation,
the classical treatment of the interaction potential can be
accomplished reasonably rigorously. However, the
treatment of the atomic vibrations themselves should be

treated quantum mechanically



In practice, each of the 3N atoms in the crystal oscillates about
its equilibrium position with various characteristic
frequencies »'(k) depending on wavevector k mode number v.

For each mode o" (k)

there 1s a harmonic

oscillator potential with \ [

quantum mechanical

eigenvalues 7" (k)(n+7) \ /

forn=0,1,2,.... \ /




it is @ good approximation to assume that mode v at each
wave vector k is independent. The quantum numbers for
each mode n=0,1,2... are not constrained so that the
canonical partition function involves a geometric summation

7 (T - N ﬂhw%k)(w;)j
vzb( ) ]:[rk[(nz(;e
o Pho" ()12
HH[l _ o P’ () j

F,(T)=-kT'In(Z,,(T))= Z(hw;(k) +kT In (1 —e M) )j

vk

;[kT h{z sinh('B h“; (k)m

Note that even at T=0, vibrations contribute to the Helmholtz
free energy. This is called zero point motion.




Thermodynamic functions for vibrations

£, (T) = Z[hw;(k) +kT ln(l—eﬂh‘”v(k))j

oF . ghe ho'(k 1
Svib(T):_( a]vibj :Z(—kln(l—e & <“>)+ T( ) W(k)]
V

vk 1—6

\
Uvib<T>=E,,-b<T>+TSvib=Z(hwv<k>e+1 1 j

vk —e_ﬁhwv(k)
[ \
oU . ] 2 P
C. (7= vib | = ho' (kK
(1) ( oT jV szvzk ( ( )) eﬂha)v(k)_l)z
\ y,

Note that at high T such that f7w" (k) << 1 for all modes,
C, ., (T >0)~ k> (1)=3Nk
vk



How can we evaluate these quantities? Again, it is
convenient to calculate the density of states for the
vibrational modes. For this various units can be used for
the vibrational frequencies such as the following --

In practice, it 1s convenient to express frequencies in wavenumbers:

a

i~

) =

(cm™) with F,(T)=[dd f,,(&,T)
0

27ce

where the weighted phonon DOS factor is

heés )
(o, T)=k.T In| 2sinh @
Join( ) B ( {2kBTJJg( )

Here g(w)= (22)3 zjd%ﬁ(ﬁ)—@v (k)) with Idc?) g(w)=3N
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Plot of lattice vibration modes for diamond plotted for various

wavevectors htos:/h fri-berlin.mpg.de/th/Meetings/DF T-workshop-Berlin2009/Talks/OnlinePublication/0630-
4T 20090630-1 FH - phonon tutorial talk web.pdf

elix Hanke & Martin Fuchs T foNoN dispersion relation
June 30, 2009 Diamond

fcc conventional cell
2 atoms per primitive cell
= 6 phonon branches

optical branches

1500 // 1500
‘-g"looo 1000
3
a; -
S -
S 500 500
o
E -

OF X W K T L. DOS "

k-vector

acoustic branches
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https://th.fhi-berlin.mpg.de/th/Meetings/DFT-workshop-Berlin2009/Talks/OnlinePublication/0630-4T_20090630-1_FH_-_phonon_tutorial_talk_web.pdf

g(e) plots from previously cited presentation showing how the
density of states is very sensitive to volume (lattice constant)

diamond

Density of states

|
0 500 1000 1500
: 1
Phonon frequency o (cm )
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Heat capacity: ¢y

Computed from free energy From Hanke & Fuckes
| ds 82F (Continued)
Cv(T) — T ﬁ y — —T W y
B o (hw)? exp(fw/kpT)
- f dw (W) (exp(hw/kpT) — 1)2
= 6
)
St
= 4
= L
= 2
2
ﬁ 1 1 | I 1 I | dlamond
< 00 1000 2000 3000

Temperature (K)



Simple approximation to density of vibrational states --

Debye model to approximate g(¢)
Based on the notion that at low frequency (&) the
vibrations behave like sound waves through the
material with a characteristic speed c. (Note that this is
the speed of sound not light!!!) In more detail sound
waves in different directions of the material can have
different speeds, but we will characterize the average
by c.

Density of states for Debye model

[ 3V¢?
gp(€)=127°n’c’
0 for e > kT,

for e < kT,

kT,

where j g,(e)de =3N kT, = 27zhc(
0

3N 1/3
4%Vj



Evaluation of heat capacity in the Debye model

] eﬂ 1 3V kT €4€ﬂe
Cpip(T) =— | de g, (e . de
szb( ) sz J‘ gD( )(e _1)2 kT2 27T2h3c3 2‘). (eﬁe —1)2
T,/T 4 x '3
_ A7 32V3 3 j dx —>¢ ~ Where kT, = 27zhc( el j
2r°h’e” g (ex —1) 4V

(2] e



5/3/2021

02 04 06 08 10 12 14 16 18 2.0
T/T
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Some typical values of T

_ Materal | T, (K

Na (metal) 150
C (diamond) 1860
Fe (metal) 420
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While detailed analysis of interacting systems may not be

always possible, the general rules of thermodynamics
(thermostatics) still apply.

Some general principles of phase transitions --



Behavior of Gibbs free energy for a material that changes phase
http://hacker.faculty.geol.ucsb.edu/geo124T/lecture.html

9G _y
) o

A

G

Example material
that has phases
o and B --

\""'x.
Ty
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Coexistence lines as a function of T and P for phases of water

A T (°C) P, (bar) L (kJ/mol)
Critical point —40 0.00013 51.16
291 1 —20 0.00103 51.13
m 0 0.00611 51.07
< 0.01 0.00612 45.05
® Ice 25 0.0317 43.99
Z 50 0.1234 42.92
< Steam 100 1.013 40.66
= 150 4.757 38.09
0.006 1 Triple point 200 15.54 34.96
250 39.74 30.90
| | - 300 85.84 25.30
—273 0.01 374 350 165.2 16.09
Temperature (°C) 374 220.6 0.00

Figure 5.11. Phase diagram for HoO (not to scale). The table gives the vapor
pressure and molar latent heat for the solid-gas transformation (first three entries)

and the liquid-gas transformation (remaining entries). Data from Keenan et al.
(1978) and Lide (1994). Copyright (©)2000, Addison-Wesley.
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Analysis of coexistence curve — the Clausius-Clapeyron equation

A
Critical point
73.8T PA
E Liguid
© Solid _
. Gas dP
E L
A, 5.2t
Triple point
| < . > | : T
' ' = dT

—56.6 31
Temperature (°C)

At the phase boundary: G, =G,

Along the coexistence curve (at fixed number of particles):
dG,q = =S dT +V,,,dP =dG,, ==S,,.dT +V,  dP

gas
dP S o S solid
d T V - Vsolid
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Analysis of coexistence curve — the Clausius-Clapeyron equation
PA

Slope of phase boundary line:
d.P: solid gas dP _ S gas ~ Osolid
AT’ V.~ Vsolid

gas

: : -
dT’

Define latent heat: L =T (S cas S, d)

dP L
dT—T(V _Vsozid)

gas

Clausius-Clapeyron equation



Example of Clausius-Clapeyron equation -- for water ice
and liquid at T=273 K and P=1 atm=1.01325 x 10° Pa

For 1 kg of water:
L=333000 J
Veoig=1.091 x10°m?  V;;,4=1.0 x 10° m?3

A
991 1 Critical point
B dP
= , 7
< 1 Water ——=-1.34x10"Pa/ K
: dT
i:.i Steam
0.006 1 Unusual property of ice
Triple point
073 001 sts . What temperature does
Temperature (*C) ice under P> 1 atm melt?
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