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PHY 341/641 Thermodynamics and 
Statistical Mechanics

MWF:  Online at 12 PM & FTF at 2 PM

Plan for Lecture 6:
Distribution of macrostates

Reading: Chapters 2.3-2.4

1. Binomial distribution for small and large samples

2. Probability, mean value, variance

3. Central limit theorem

4. Stirling’s approximation Record!!!
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Your questions –
From Parker -- Why is it that at the microscopic level processes are 
reversible, I thought reversible processes were always an approximation? The 
principle of detailed balance lets this happen at microscopic, but I think not 
macroscopic levels.
From Kristen -- 1. For the example in 2.3, why is the multiplicity of the total 
system the product of the two solids, not the sum? (Figure 2.4)  2. I would love to 
go through some of the math to get to equation 2.22 because I am a bit confused.
From Annelise -- What is the significance of knowing which macrostate is 
most plausible? Why does that matter?
From Rich -- When would it be useful to use Sterling's approximation of a 
factorial?
From Leon -- So for large samples binomial distribution converges to the 
Gaussian distribution, but if it comes to a small sample can we still use this 
approximation or we should do something else?
From Zezhong -- I would how to get the final approximation of equation 2.26 
and how to get equation 2.27? Also, I wonder what is the meaning of variance for 
Physics since I forget it.
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Your questions – continued –
From Michael -- For a Gaussian function, how do we classify the probability 
of an energy outside that of the width of (qN^-.5) from the omega maximum 
occurring? How far outside this width is it a realistic estimation that this solution 
could occur?
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Some discussion –
Question -- Why is it that at the microscopic level 
processes are reversible, I thought reversible processes were 
always an approximation? The principle of detailed balance 
lets this happen at microscopic, but I think not macroscopic 
levels.

Comment – At the atomic level, we expect that basic 
reversible physics applies, such as Newton’s laws, quantum 
mechanics, etc. At the macroscopic level, we cannot know all 
of the details of each particle motion and we are dealing with 
averages of properties.    How exactly irreversisiblity comes 
into this story is an active intellectual challenge even today.
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Some discussion –
Your question -- What is the significance of knowing which 
macrostate is most plausible? Why does that matter?

Comment – In this treatment, we are preparing for how to 
reconcile the atomic and macroscopic viewpoints.    At the 
atomic level, we can solve Newton’s equations if we know 
initial of boundary values.   At the macroscopic, we cannot 
know the initial or boundary values of 1023 particles; the 
best we can do is estimate averages based on some 
macroscopic measurements such as T, P, V, S……   But 
because there are so many particles, even the averaging is 
difficult and in these sections we are finding that there are 
some simplifying patterns that can help us.    In particular, 
for some macrostate property,   there is a small range of 
values that have a very large multiplicity and the others are 
much smaller multiplicities.
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Discussion –
Question -- When would it be useful to use Sterling's 
approximation of a factorial?

Comment – 10!~106

Question -- For the example in 2.3, why is the multiplicity 
of the total system the product of the two solids, not the 
sum? (Figure 2.4) 
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In the last lecture, we introduced the notion of 
microstates and macrostates, introducing the  
multiplicity distribution Ω(N,n).  Here we will first focus 
on the example  of a spin ½ system where an example
microstate may be 

Here  denotes the total number of spins with
 up spins and  down spins.

N
n N N n N↑ ↓= − =
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Example microstate

The multiplicity of this state of  total spins with  up spins:
!
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A related quantity is the probability of a finding among the
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More results for the binomial probability distribution
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Useful formula -- Stirling's approximation of factorial

! 2MM e MM M π−≈
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Small digression --

Useful formula -- Stirling's approximation of factorial

! 2MM e MM M π−≈

( )Plot of difference: ! 2NNe NN N π−−
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Comparison of binomial probability and Gaussian probability

N=6 N=20

Binomial
Gaussian
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Is it an accident that for large samples the binomial 
distribution converges to the Gaussian distribution?

It is possible to prove that the probability density of a 
collection of N independent random variables with finite 
variance, summed together, is a Gaussian distribution in 
the limit that Ninfinity.    This is called the “Central Limit 
Theorem”.
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Some details of the central limit theorem as explained by 
Essential Statistical Physics by Malcolm P. Kennett, 
Cambridge U. Press, 2021

Suppose that we have N random variables si that can take on 
multiple different values.   These variables have a mean <s>
and a variance σs

2 .   We then determine their sum S and 
examine the probability distribution for the value of S.
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Recap --
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As the sample becomes very large, independent of the 
details of the system, the probability distribution of the 
variables becomes increasing peaked about the mean value.
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Are these ideas generalizable to continuous variables 
such as found in the description of an ideal gas for 
example?      This is the subject of Section 2.5 of your 
textbook which we will examine next time.
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Another example of microstate  microstate analysis –
the Einstein oscillators model
Another example of microstate and microstate modeling

1 1
2 2

A system of independent harmonic oscillators
each with energies    ( ) ( )nE hf n nω= + +≡ 

In the following we will use “q” instead of “n” --



2/08/2021 PHY 341/641  Spring 2021 -- Lecture 6 21
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Multiplicity for  harmonic oscillators 
with  energy units ( ))
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Thanks to Stirling approximation
Further simplification
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When the dust clears --
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