

In this lecture we will continue our discussion of microstates and macrostates. The 2 state example can be described/generalized by use of the binomial distribution which will help us understand how to describe macroscopic systems.

Y	341/641	Thermo	dynamics and Sta	tistica	I Mecha
			•		
	MWF	12 and 2 Online	and face-to-face http://www.wfu.edu/~nat	alie/s21phy3	41/
		Instructor: Natal	e Holzwarth Office:300 OPL e-mail:natalie	@wfu.edu	
imi	nary schedule su		se schedule for Spring 202' adjustment.) Reading assignments are		Introduction to
əlimi	Physics by D	bject to frequent aniel V. Schroed	adjustment.) Reading assignments are er. The HW assignment numbers refer	for the An to problems	in that text.
elimi	Physics by D	bject to frequent aniel V. Schroed Reading	adjustment.) Reading assignments are er. The HW assignment numbers refer	e for the An to problems	in that text. Due date
elimi	Physics by D	bject to frequent aniel V. Schroed Reading Chap. 1.1-1.3	adjustment.) Reading assignments are er. The HW assignment numbers refer Topic Introduction and ideal gas equations	for the An to problems	in that text.
limi	Physics by D Lecture date 1 Wed: 01/27/2021	bject to frequent aniel V. Schroed Reading Chap. 1.1-1.3 Chap. 1.2-1.4	adjustment.) Reading assignments are er. The HW assignment numbers refer	e for the An to problems HW 1.21	in that text. Due date 01/29/2021
elimi	Physics by D Lecture date 1 Wed: 01/27/2021 2 Fri: 01/29/2021	bject to frequent aniel V. Schroed Reading Chap. 1.1-1.3 Chap. 1.2-1.4 Chap. 1.5-1.6	adjustment.) Reading assignments are er. The HW assignment numbers refer Topic Introduction and ideal gas equations First law of thermodynamics	e for the An to problems HW 1.21	in that text. Due date 01/29/2021
elimi	Physics by D Lecture date Wed: 01/27/2021 Fri: 01/29/2021 Mon: 02/01/2021	bject to frequent aniel V. Schroed Reading Chap. 1.1-1.3 Chap. 1.2-1.4 Chap. 1.5-1.6	adjustment.) Reading assignments are er. The HW assignment numbers refer Topic Introduction and ideal gas equations First law of thermodynamics Work and heat for an ideal gas	e for the An to problems HW 1.21 1.17	in that text. Due date 01/29/2021 02/03/2021
elimi	Physics by D Lecture date Wed: 01/27/2021 Fri: 01/29/2021 Mon: 02/01/2021 Mod: 02/03/2021	bject to frequent aniel V. Schroed Reading Chap. 1.1-1.3 Chap. 1.2-1.4 Chap. 1.5-1.6 Chap. 1.1-1.6 Chap. 2.1-2.2	adjustment.) Reading assignments are er. The HW assignment numbers refer Topic Introduction and ideal gas equations First law of thermodynamics Work and heat for an ideal gas Review of energy, heat, and work	e for the An to problems HW 1.21 1.17	in that text. Due date 01/29/2021 02/03/2021
elimi	Physics by D Lecture date Wed: 01/27/2021 Amon: 02/01/2021 Mon: 02/01/2021 Mon: 02/01/2021 Fri: 01/29/2021 Fri: 01/29/2021 Fri: 01/29/2021	bject to frequent aniel V. Schroed Reading Chap. 1.1-1.3 Chap. 1.2-1.4 Chap. 1.5-1.6 Chap. 2.1-2.2 Chap. 2.3-2.4	adjustment.) Reading assignments are er. The HW assignment numbers refer Topic Introduction and ideal gas equations First law of thermodynamics Work and heat for an ideal gas Review of energy, heat, and work Aspects of entropy	e for the An to problems 1.21 1.17 1.45	in that text. Due date 01/29/2021 02/03/2021 02/05/2021 02/05/2021
elimi	Physics by D Lecture date 1 Wed: 01/27/2021 2 Fri: 01/29/2021 3 Mon: 02/01/2021 4 Wed: 02/03/2021 5 Fri: 02/05/2021 6 Mon: 02/08/2021	bject to frequent aniel V. Schroed Reading Chap. 1.1-1.3 Chap. 1.2-1.4 Chap. 1.5-1.6 Chap. 2.1-2.2 Chap. 2.3-2.4	adjustment.) Reading assignments are er. The HW assignment numbers refer Topic Introduction and ideal gas equations First law of thermodynamics Work and heat for an ideal gas Review of energy, heat, and work Aspects of entropy	e for the An to problems 1.21 1.17 1.45	in that text. Due date 01/29/2021 02/03/2021 02/05/2021 02/05/2021
limi	Physics by D Lecture date Wed: 01/27/2021 Amon: 02/01/2021 Mon: 02/01/2021 Mon: 02/05/2021 Fri: 02/05/2021 Mon: 02/08/2021 Mon: 02/08/2021 Mon: 02/08/2021 Mon: 02/08/2021	bject to frequent aniel V. Schroed Reading Chap. 1.1-1.3 Chap. 1.2-1.4 Chap. 1.5-1.6 Chap. 2.1-2.2 Chap. 2.3-2.4	adjustment.) Reading assignments are er. The HW assignment numbers refer Topic Introduction and ideal gas equations First law of thermodynamics Work and heat for an ideal gas Review of energy, heat, and work Aspects of entropy	e for the An to problems 1.21 1.17 1.45	in that text. Due date 01/29/2021 02/03/2021 02/05/2021 02/05/2021

In the last lecture, we introduced the notion of microstates and macrostates, introducing the multiplicity distribution $\Omega(N,n)$. Here we will first focus on the example of a spin $\frac{1}{2}$ system where an example microstate may be

$\vec{B} \uparrow \downarrow \downarrow \downarrow \downarrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \downarrow \uparrow \uparrow \downarrow \uparrow \uparrow \downarrow \downarrow \uparrow \downarrow$

Figure 2.1. A symbolic representation of a two-state paramagnet, in which each elementary dipole can point either parallel or antiparallel to the externally applied magnetic field. Copyright ©2000, Addison-Wesley.

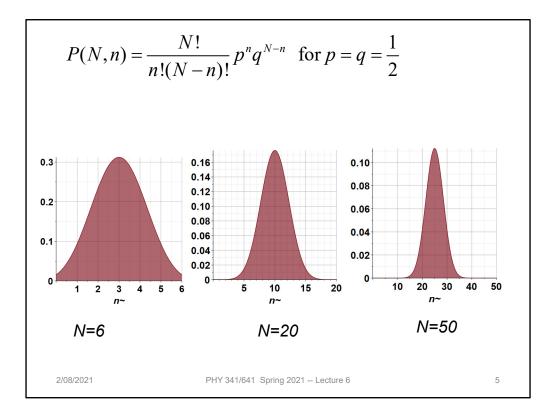
Here N denotes the total number of spins with $n = N_{\uparrow}$ up spins and $N - n = N_{\downarrow}$ down spins.

2/08/2021

PHY 341/641 Spring 2021 -- Lecture 6

Example microstate

The multiplicity of this state of N total spins with n up spins:


$$\Omega(N,n) = \frac{N!}{n!(N-n)!}$$

A related quantity is the probability of a finding among the macrostates, one that has n up spins when the probability of a single spin up state is p and q is the probability of a down spin.

$$P(N,n) = \Omega(N,n)p^{n}q^{N-n} = \frac{N!}{n!(N-n)!}p^{n}q^{N-n}$$

Note that $\sum_{n=1}^{N} P(N,n) = \sum_{n=1}^{N} \frac{N!}{n!(N-n)!}p^{n}q^{N-n} = (p+q)^{N} = 1$

2/08/2021

PHY 341/641 Spring 2021 -- Lecture 6

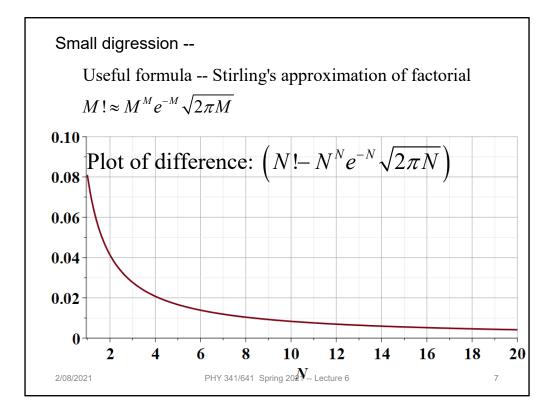
More results for the binomial probability distribution

$$P(N,n) = \frac{N!}{n!(N-n)!} p^n q^{N-n}$$

Average value of *n*:

$$\mu \equiv \left\langle n \right\rangle = \sum_{n=0}^{N} n P(N, n) = N p$$

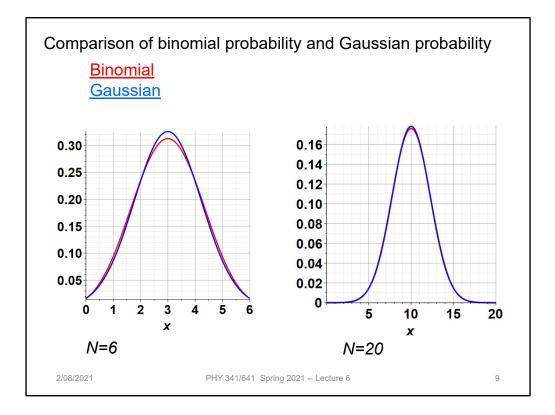
Variance of *n*:


$$\sigma^2 \equiv \left\langle \left(n - \left\langle n \right\rangle \right)^2 \right\rangle = Npq$$

Useful formula -- Stirling's approximation of factorial

$$M! \approx M^M e^{-M} \sqrt{2\pi M}$$

2/08/2021


PHY 341/641 Spring 2021 -- Lecture 6

Now consider a continuous probability function P(x)

for
$$-\infty \le x \le \infty$$

$$\int_{-\infty}^{\infty} P(x)dx = 1$$
Mean value: $\mu = \int_{-\infty}^{\infty} xP(x)dx$ Variance: $\sigma^2 = \int_{-\infty}^{\infty} (x-\mu)^2 P(x)dx$
Example: Gaussian probability function
 $P_G(x;\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/2\sigma^2}$
It can be shown that:
 $\langle x \rangle = \int_{-\infty}^{\infty} xP_G(x;\mu,\sigma^2) = \mu$
 $\langle (x-\langle x \rangle)^2 \rangle = \int_{-\infty}^{\infty} (x-\langle x \rangle)^2 P_G(x;\mu,\sigma^2) = \sigma^2$
208/2021 PHY 341/641 Spring 2021 - Lecture 6

Is it an accident that for large samples the binomial distribution converges to the Gaussian distribution?

→It is possible to prove that the probability density of a collection of *N* independent random variables with finite variance, summed together, is a Gaussian distribution in the limit that N→infinity. This is called the "Central Limit Theorem".

2/08/2021

PHY 341/641 Spring 2021 -- Lecture 6

Some details of the central limit theorem as explained by <u>Essential Statistical Physics</u> by Malcolm P. Kennett, Cambridge U. Press, 2021

Suppose that we have *N* random variables s_i that can take on multiple different values. These variables have a mean $\langle s \rangle$ and a variance σ_s^2 . We then determine their sum *S* and examine the probability distribution for the value of *S*.

$$S \equiv \sum_{i=1}^{N} s_i$$

The central limit theorem says that for $N \rightarrow \infty$

$$P(S) = \frac{1}{\sqrt{2\pi \langle S \rangle}} e^{-(S - \langle S \rangle)^2 / 2\sigma_s^2} \quad \text{where} \quad \langle S \rangle = N \langle S \rangle \text{ and } \sigma_s^2 = N \sigma_s^2$$

2/08/2021

PHY 341/641 Spring 2021 -- Lecture 6

Recap --

Recall that the variances are defined to be

$$\sigma_s^2 = \left\langle \left(s - \langle s \rangle\right)^2 \right\rangle \quad \text{and} \quad \sigma_s^2 = \left\langle \left(S - \langle S \rangle\right)^2 \right\rangle$$

The central limit theorem says that for $N \to \infty$
$$P(S) = \frac{1}{\sqrt{2\pi} \langle S \rangle} e^{-(S - \langle S \rangle)^2 / 2\sigma_s^2} \quad \text{where} \quad \langle S \rangle = N \langle s \rangle \text{ and } \sigma_s^2 = N \sigma_s^2$$
$$\Rightarrow \frac{\sigma_s}{\langle S \rangle} = \frac{1}{\sqrt{N}} \frac{\sigma_s}{\langle s \rangle}$$

As the sample becomes very large, independent of the details of the system, the probability distribution of the variables becomes increasing peaked about the mean value.

2/08/2021

PHY 341/641 Spring 2021 -- Lecture 6

Are these ideas generalizable to continuous variables such as found in the description of an ideal gas for example? This is the subject of Section 2.5 of your textbook which we will examine next time.

2/08/2021

PHY 341/641 Spring 2021 -- Lecture 6