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PHY 341/641 Thermodynamics and 
Statistical Mechanics

MWF:  Online at 12 PM & FTF at 2 PM

Discussion for Lecture 7:
Entropy and microstate multiplicity

Reading: Chapters 2.5-2.6

1. Micro and macro states of an ideal gas

2. Entropy and microstate multiplicity

Record!!!
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Your questions –

From Kristen -- 1. Could we discuss what we would use equation 2.41 in, is it 
important we know how to derive it or will we be given the values of the variables in 
the equation?  2. I am confused when the book talks about free expansion what 
they mean by "we have manufactured new entropy, right here on the spot". How can 
you manufacture new entropy?
From Parker -- The second law of thermodynamics states that the total entropy 
of the universe tends to increase, do we say it is not a fundamental law in one 
sense because of the probabilistic nature of it? The first law (that the change in 
internal energy is the work done on the system plus heat) is fundamental in the 
sense that it is a deterministic not probabilistic phenomenon.
From Chao -- Can you explain more on the relationship between multiplicity 
function and area of momentum hypersphere?
From Rich -- How do you distinguish between reversible and irreversible 
processes? For example, wouldn't melting ice increase entropy yet this is still 
reversible?
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From Annelise -- Why does heat flow from warm to cold if the 
warmer something is the more entropy it has?
From Michael -- Is the reason that entropy is always 
increasing is because the universe is constantly increasing?
From Zezhong -- Is the reason that entropy is always increasing is because 
the universe is constantly increasing?
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Estimating the multiplicity function for a monoatomic 
ideal gas.  

From classical mechanics, assuming each atom is 
labeled (“distinguishable”)

Suppose there are N atoms within 
volume V, each having coordinates
and momenta --V

, , , , ,
1,2,....

In fact, these 6  variables that characterize
each particle each vary in time according to
Newton's laws -- ( ), ( ), ( ), ( ), ( ), ( )
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This 6N dimensional space is called phase space 
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Phase space

{ } { }( )

Phase space is defined at the set of all 
coordinates and momenta of a system: 

( ) , ( )  

For a  dimensional system with  particles,
the phase space corresponds to 2  degrees of freedom.

q t p t

d N
dN

σ σ

The notion of density of particles in  phase space is 
simply the ratio of the number of particles per unit phase 
space volume.      It seems reasonable that under 
conditions where there are no sources or sinks for the 
particles, that the density should remain constant in 
time.
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Phase space diagram for one-dimensional motion due to 
constant force
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Phase space diagram for one-dimensional motion due to 
spring force

p

x

( )

( ) ( )

2
2 2 2

0
0 0 0

                

( ) cos           ( ) sin

1,
2 2

   i
i i i i i

pH x p px p m x x
m

pp t

m
m

p t x t t
m

ω ω

ω θ ω θ
ω

= − =

= + = +

= +  



9/23/2020 PHY 711  Fall 2020 -- Lecture 13 9

Liouville’s Theorem   (1838)

The density of representative points in phase 
space corresponding to the motion of a system of 
particles remains constant during the motion.
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Liouville’s theorem
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Liouville’s theorem -- continued
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Liouville’s theorem -- continued
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Review:
Liouville’s theorem:

Imagine a collection of particles obeying the 
Canonical equations of motion in phase space.

{ } { }( )1 3 1 3

Let  denote the "distribution" of particles in phase space:
, ,

Liouville's theorm shows that:

0               is constant in time

N N

D
D D q q p p t

dD D
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 

Note that we are assuming that no particles are 
created or destroyed in these processes.
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Why is the Liouville theorem significant?

We are about to analyze the microstates of an ideal gas 
by enumerate the possible coordinates and momenta 
independent of their time dependence.   The Liouville 
theorem suggests that is a good thing to do.
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Microstate: the "distribution" of particles in phase space:
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Macrostate multiplicity based on total ("intern
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In practice, we will assume that D is uniform.
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For an ideal gas with N atoms of mass M:
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Since the atoms are in a box of volume V:
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Multiplicity function for an ideal gas in volume V and internal 
energy U:
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Boltzmann's idea was to use the multiplicity function
to calculate the entro
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Sackur-Tetrode equation --

Does it make any sense?

Example--  Consider a system at fixed  and 
expand :
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Some ideas about the second law of thermodynamics

• Kelvin-Planck: It is impossible to construct an engine 
which, operation in a cycle, will produce no other effect 
than the extraction of energy from a reservoir and the 
performance of an equivalent amount of work.

• Clausius: No process is possible whose sole result is 
cooling a colder body and heating a hotter body.

• Gould-Tobochnik:There exists an additive function of 
state known as the entropy S that can never decrease in 
an isolated system. 

• Schoeder: Any large system in equilibrium will be found 
in the microstate with the greatest multiplicity (aside 
from fluctuations that are normally too small to 
measure.)
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