
PHY 341/641 Thermodynamics and 
Statistical Mechanics

MWF:  Online at 12 PM & FTF at 2 PM

Discussion for Lecture 8:
Entropy and microstate multiplicity

Reading: Chapters 2.1-2.6

1. Micro and macro states; microstate multiplicity

2. Basic ideas of probability; large samples 

3. Ideal gas example

4. Entropy and microstate multiplicity

Record!!!
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Your questions – Including some from last time --
From Kristen -- Could we discuss what we would use equation 2.41 in, is it 
important we know how to derive it or will we be given the values of the variables in the 
equation? I am confused when the book talks about free expansion what they mean by 
"we have manufactured new entropy, right here on the spot". How can you manufacture 
new entropy? Why is it important to know the macrostate multiplicity versus the 
microstate multiplicity?  Why can you use the multiplicity to determine the entropy, what 
is this really telling us about how they are related?  In the lecture from Wednesday, slide 
21, why at the top is kB not multiplied by N but at the bottom it is?

From Parker -- The second law of thermodynamics states that the total entropy of 
the universe tends to increase, do we say it is not a fundamental law in one sense 
because of the probabilistic nature of it? The first law (that the change in internal energy 
is the work done on the system plus heat) is fundamental in the sense that it is a 
deterministic not probabilistic phenomenon. what sort of processed can be 
approximated as reversible on a macroscopic scale? Everyday life examples mostly, 
and why?

From Chao -- Can you explain more on the relationship between multiplicity 
function and area of momentum hypersphere? What does the volume of momentums 
stand for, and while we can calculate it, why it can use the area of a hypersphere to 
stand for it?
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From Rich -- How do you distinguish between reversible and irreversible 
processes? For example, wouldn't melting ice increase entropy yet this is still 
reversible? I am still confused how processes that create entropy are irreversible? 
For example, melting ice increases entropy but this is not irreversible? Similar to
the first question, I know the formula for Gibb's Free Energy is G=H-TS. Does this 
show entropy can be converted to enthalpy, and does this violate the second law 
of thermodynamics?

From Annelise -- Why does heat flow from warm to cold if the warmer 
something is the more entropy it has?

From Michael -- Is the reason that entropy is always increasing is because 
the universe is constantly increasing? When calculating the multiplicity of a gas 
such as we did for our homework, is the radius we are using always going to be 
sqrt(2mU). If so why/why not?

From Zezhong -- Is the reason that entropy is always increasing is because 
the universe is constantly increasing? I still get confused about the Gibbs Paradox,
I wonder how this paradox works since the description in the textbook seems 
vague for me

From Leon -- Could we review a bit on the multiplicity of a monatomic ideal 
gas? I'm still a bit confused with the concept of momentum space and the sphere, 
and other equations associated with them.2/12/2021 PHY 341/641  Spring 2021 -- Lecture 8 4



Variables of thermodynamics
 Temperature – T ≥ 0 in Kelvin scale

 Volume – V in units of m3

 Pressure – P in units of Pascals (Newtons/m2)

 Entropy – S in units of Joules/K

Mass – M in units of kg

 Number  of particles – N

Energies of thermodynamics  (in units of Joules)

 Internal energy U

 Enthalpy H

 Helmholtz free energy F

 Gibbs free energy G
2/12/2021 PHY 341/641  Spring 2021 -- Lecture 8 5



Carnot invented a very efficient ideal cycle which Clausius 
further analyzed as “entropy” S which is related to heat
according to f
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From last Friday’s lecture --
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Some details
Ideal gas equation of state  

Ideal gas internal energy  
1

First law of ther

For isothe

 

rmal process 0 an  

modynamics

ln       ln

d

B

B

B B D B

U
Q

PV Nk T
Nk TU

V V
V

Q W
U W

Q Nk T Q Nk
V

T

γ

=

=
−



∆ = +
∆ =

   
  
 

=


=

=


−

( )

1) 1) 1) 1)

3 3
2 1

1/( 1/( 1/( 1/(
1

2

1 2 2 3 2 4 1

4

1 2

Also note that because of adiabatic ideal gas equations --
=   and      =  

    ln  ABCD B

VT V T V T V T

V V VQ T
V V

T
V

Nk

γ γ γ γ− − − −

 
⇒ = ⇒  

 
= −

PHY 341/641  Spring 2021 -- Lecture 8 72/12/2021



Summary of results

f

i

S

S

Q TdS= ∫

A

B

C

D

T

S
S2S1

T1

T2

( )( )

( )

2 1 2 1

3
2 1

2

3

2 2 1

          =  

         ln  

ln

ABC

B D

B

D

B D
B

S T
Q

Nk

Q S T
Q

N

V T
V

Q

T

V Q
T V T

k

=

 
 
 

 
= = − 

 

− −

+

= −

V1

V2 V3

V4

2/12/2021 PHY 341/641  Spring 2021 -- Lecture 8 8



2/12/2021 PHY 341/641  Spring 2021 -- Lecture 8 9

/

2

3 24 5( , , ) ln
3 2B

VS N V U Nk
N N

MU
h

π   ≈ +        

Sackur-Tetrode equation --

Example--  Consider a system at fixed  and 
expand :
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From Wednesday’s lecture --
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In practice, we will assume that D is uniform.
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For an ideal gas with N atoms of mass M:
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Sackur-Tetrode equation --

Example--  Consider a system at fixed  and 
expand :
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Digression on δ and Θ functions
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Volume and surface integrals --
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three dimensions --
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Other points to remember 
Basic ideas of probability theory  mean (average) 
value and variance.
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Some ideas about the second law of thermodynamics

• Kelvin-Planck: It is impossible to construct an engine 
which, operation in a cycle, will produce no other effect 
than the extraction of energy from a reservoir and the 
performance of an equivalent amount of work.

• Clausius: No process is possible whose sole result is 
cooling a colder body and heating a hotter body.

• Gould-Tobochnik:There exists an additive function of 
state known as the entropy S that can never decrease in 
an isolated system. 

• Schoeder: Any large system in equilibrium will be found 
in the microstate with the greatest multiplicity (aside 
from fluctuations that are normally too small to 
measure.)
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Up to now, we have focused on describing a single 
isolated sample.   What happens when we have 2 
samples that are somehow  related to eachother?
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Mixing of two gases, initially partitioned --
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