PHY 712 Electrodynamics 10-10:50 AM Online

Discussion for Lecture 21:

Chap. 8 in Jackson – Wave Guides

- 1. TEM, TE, and TM modes
- 2. Justification for boundary conditions; behavior of waves near conducting surfaces

13	Wed: 02/24/2021	Chap. 5	Magnetic dipoles and hyperfine interaction		03/01/2021
14	Fri: 02/26/2021	Chap. 5	Magnetic dipoles and dipolar fields		
15	Mon: 03/01/2021	Chap. 6	Maxwell's Equations		03/08/2021
16	Wed: 03/03/2021	Chap. 6	Electromagnetic energy and forces		
17	Fri: 03/05/2021	Chap. 7	Electromagnetic plane waves		
18	Mon: 03/08/2021	Chap. 7	Electromagnetic plane waves		03/10/2021
19	Wed: 03/10/2021	Chap. 7	Optical effects of refractive indices		03/12/2021
20	Fri: 03/12/2021	Chap. 1-7	Review		
	Mon: 03/15/2021	No class	APS March Meeting	Take Home Exam	
	Wed: 03/17/2021	No class	APS March Meeting	Take Home Exam	
	Fri: 03/19/2021	No class	APS March Meeting	Take Home Exam	
21	Mon: 03/22/2021	Chap. 8	EM waves in wave guides		
22	Wed: 03/24/2021	Chap. 9	Radiation from localized oscillating sources		

Your questions –

From Gao -- How do we know what kinds of mode(TE, TM, TEM, or others) a guide will have at a first glance?

Comment -- In general TEM modes propagate in free space while the possible modes associated with media with one or more metallic surface are more complicated.

Maxwell's equations

For linear isotropic media and no sources: $\mathbf{D} = \varepsilon \mathbf{E}$; $\mathbf{B} = \mu \mathbf{H}$ Coulomb's law: $\nabla \cdot \mathbf{E} = 0$

Ampere-Maxwell's law:
$$\nabla \times \mathbf{B} - \mu \varepsilon \frac{\partial \mathbf{E}}{\partial t} = 0$$

Faraday's law: $\nabla \times \mathbf{E} + \frac{\partial \mathbf{B}}{\partial t} = 0$

No magnetic monopoles: $\nabla \cdot \mathbf{B} = 0$

Analysis of Maxwell's equations without sources -- continued:

Coulomb's law :
$$\nabla \cdot \mathbf{E} = 0$$

Ampere - Maxwell's law :
$$\nabla \times \mathbf{B} - \mu \varepsilon \frac{\partial \mathbf{E}}{\partial t} = 0$$

Faraday's law :
$$\nabla \times \mathbf{E} + \frac{\partial \mathbf{B}}{\partial t} = 0$$

No magnetic monopoles : $\nabla \cdot \mathbf{B} = 0$

$$\nabla \times \left(\nabla \times \mathbf{B} - \mu \varepsilon \frac{\partial \mathbf{E}}{\partial t} \right) = -\nabla^2 \mathbf{B} - \mu \varepsilon \frac{\partial (\nabla \times \mathbf{E})}{\partial t}$$
$$= -\nabla^2 \mathbf{B} + \mu \varepsilon \frac{\partial^2 \mathbf{B}}{\partial t} = 0$$

$$\partial \mathbf{R}$$
 ∂t^2

$$\nabla \times \left(\nabla \times \mathbf{E} + \frac{\partial \mathbf{B}}{\partial t} \right) = -\nabla^2 \mathbf{E} + \frac{\partial (\nabla \times \mathbf{B})}{\partial t}$$
$$= -\nabla^2 \mathbf{E} + \mu \varepsilon \frac{\partial^2 \mathbf{E}}{\partial t^2} = 0$$

PHY 712 Spring 2021 -- Lecture 21

Analysis of Maxwell's equations without sources -- continued: Both E and B fields are solutions to a wave equation:

$$\nabla^{2}\mathbf{B} - \frac{1}{v^{2}} \frac{\partial^{2}\mathbf{B}}{\partial t^{2}} = 0$$

$$\nabla^{2}\mathbf{E} - \frac{1}{v^{2}} \frac{\partial^{2}\mathbf{E}}{\partial t^{2}} = 0$$

where $v^{2} \equiv c^{2} \frac{\mu_{0}\varepsilon_{0}}{\mu\varepsilon} \equiv \frac{c^{2}}{n^{2}}$

Plane wave solutions to wave equation :

$$\mathbf{B}(\mathbf{r},t) = \Re\left(\mathbf{B}_{0}e^{i\mathbf{k}\cdot\mathbf{r}-i\omega t}\right) \qquad \mathbf{E}(\mathbf{r},t) = \Re\left(\mathbf{E}_{0}e^{i\mathbf{k}\cdot\mathbf{r}-i\omega t}\right)$$

Analysis of Maxwell's equations without sources -- continued: Plane wave solutions to wave equation :

$$\mathbf{B}(\mathbf{r},t) = \Re\left(\mathbf{B}_{0}e^{i\mathbf{k}\cdot\mathbf{r}-i\omega t}\right) \qquad \mathbf{E}(\mathbf{r},t) = \Re\left(\mathbf{E}_{0}e^{i\mathbf{k}\cdot\mathbf{r}-i\omega t}\right)$$
$$|\mathbf{k}|^{2} = \left(\frac{\omega}{\nu}\right)^{2} = \left(\frac{n\omega}{c}\right)^{2} \qquad \text{where } n \equiv \sqrt{\frac{\mu\varepsilon}{\mu_{0}\varepsilon_{0}}}$$

Note: ε , μ , n, k can all be complex; for the moment we will assume that they are all real (no dissipation).

Note that \mathbf{E}_0 and \mathbf{B}_0 are not independent;

from Faraday's law :
$$\nabla \times \mathbf{E} + \frac{\partial \mathbf{B}}{\partial t} = 0$$

 $\Rightarrow \mathbf{B}_0 = \frac{\mathbf{k} \times \mathbf{E}_0}{\omega} = \frac{n\hat{\mathbf{k}} \times \mathbf{E}_0}{c}$
For real
 ε, μ, n, k
also note : $\hat{\mathbf{k}} \cdot \mathbf{E}_0 = 0$ and $\hat{\mathbf{k}} \cdot \mathbf{B}_0 = 0$
PHY 712 Spring 2021 -- Lecture 21

Analysis of Maxwell's equations without sources -- continued: Summary of plane electromagnetic waves:

$$\mathbf{B}(\mathbf{r},t) = \Re\left(\frac{n\hat{\mathbf{k}} \times \mathbf{E}_{0}}{c} e^{i\mathbf{k}\cdot\mathbf{r}-i\omega t}\right) \qquad \mathbf{E}(\mathbf{r},t) = \Re\left(\mathbf{E}_{0}e^{i\mathbf{k}\cdot\mathbf{r}-i\omega t}\right)$$
$$\left|\mathbf{k}\right|^{2} = \left(\frac{\omega}{v}\right)^{2} = \left(\frac{n\omega}{c}\right)^{2} \quad \text{where } n \equiv \sqrt{\frac{\mu\varepsilon}{\mu_{0}\varepsilon_{0}}} \quad \text{and } \hat{\mathbf{k}}\cdot\mathbf{E}_{0} = 0$$

Poynting vector and energy density:

Transverse electric and magnetic waves (TEM)

$$\mathbf{B}(\mathbf{r},t) = \Re\left(\frac{n\hat{\mathbf{k}} \times \mathbf{E}_{0}}{c} e^{i\mathbf{k}\cdot\mathbf{r}-i\omega t}\right) \qquad \mathbf{E}(\mathbf{r},t) = \Re\left(\mathbf{E}_{0}e^{i\mathbf{k}\cdot\mathbf{r}-i\omega t}\right)$$
$$|\mathbf{k}|^{2} = \left(\frac{\omega}{v}\right)^{2} = \left(\frac{n\omega}{c}\right)^{2} \quad \text{where } n \equiv \sqrt{\frac{\mu\varepsilon}{\mu_{0}\varepsilon_{0}}} \quad \text{and } \hat{\mathbf{k}}\cdot\mathbf{E}_{0} = 0$$

TEM modes describe electromagnetic waves in lossless media and vacuum

For real *ε, μ, n, k*

Effects of complex dielectric; fields near the surface on an ideal conductor

Suppose for an isotropic medium : $\mathbf{D} = \varepsilon_b \mathbf{E}$ $\mathbf{J} = \sigma \mathbf{E}$ Maxwell's equations in terms of **H** and **E** :

 $\nabla \cdot \mathbf{E} = 0 \qquad \qquad \nabla \cdot \mathbf{H} = 0$

$$\nabla \times \mathbf{E} = -\mu \frac{\partial \mathbf{H}}{\partial t} \qquad \nabla \times \mathbf{H} = \sigma \mathbf{E} + \varepsilon_b \frac{\partial \mathbf{E}}{\partial t}$$

$$\left(\nabla^2 - \mu \sigma \frac{\partial}{\partial t} - \mu \varepsilon_b \frac{\partial^2}{\partial t^2}\right) \mathbf{F} = \mathbf{0} \qquad \mathbf{F} = \mathbf{E}, \mathbf{H}$$

Plane wave form for **E** :

$$\mathbf{E}(\mathbf{r},t) = \Re\left(\mathbf{E}_{0}e^{i\mathbf{k}\cdot\mathbf{r}-i\omega t}\right) \qquad \text{where } \mathbf{k} = (n_{R} + in_{I})\frac{\omega}{c}\hat{\mathbf{k}}$$
$$\Rightarrow \mathbf{E}(\mathbf{r},t) = e^{-\hat{\mathbf{k}}\cdot\mathbf{r}/\delta}\Re\left(\mathbf{E}_{0}e^{in_{R}(\omega/c)\hat{\mathbf{k}}\cdot\mathbf{r}-i\omega t}\right)$$

03/22/2021

PHY 712 Spring 2021 -- Lecture 21

Some details:

Plane wave form for **E** :

$$\mathbf{E}(\mathbf{r},t) = \Re\left(\mathbf{E}_0 e^{i\mathbf{k}\cdot\mathbf{r}-i\omega t}\right)$$

$$\left(\nabla^2 - \mu \sigma \frac{\partial}{\partial t} - \mu \varepsilon_b \frac{\partial^2}{\partial t^2}\right) \mathbf{E} = 0$$

$$-\left(n_{R}+in_{I}\right)^{2}+i\frac{\mu\sigma c^{2}}{\omega}+\mu\varepsilon_{b}c^{2}=0$$

where
$$\mathbf{k} = (n_R + in_I) \frac{\omega}{c} \hat{\mathbf{k}}$$

Fields near the surface on an ideal conductor -- continued For our system:

$$\frac{\omega}{c}n_{R} = \omega\sqrt{\frac{\mu\varepsilon_{b}}{2}} \left(\sqrt{1 + \left(\frac{\sigma}{\omega\varepsilon_{b}}\right)^{2}} + 1\right)^{1/2}$$

$$\frac{\omega}{c}n_{I} = \omega\sqrt{\frac{\mu\varepsilon_{b}}{2}} \left(\sqrt{1 + \left(\frac{\sigma}{\omega\varepsilon_{b}}\right)^{2}} - 1\right)^{1/2}$$
For $\frac{\sigma}{\omega} >> 1$ $\frac{\omega}{c}n_{R} \approx \frac{\omega}{c}n_{I} \approx \sqrt{\frac{\mu\sigma\omega}{2}} \equiv \frac{1}{\delta}$ "skin depth"
 $\Rightarrow \mathbf{E}(\mathbf{r}, t) = e^{-\hat{\mathbf{k}}\cdot\mathbf{r}/\delta} \Re\left(\mathbf{E}_{0}e^{i\hat{\mathbf{k}}\cdot\mathbf{r}/\delta - i\omega t}\right)$

$$\Rightarrow \mathbf{H}(\mathbf{r}, t) = \frac{n}{c\mu}\hat{\mathbf{k}} \times \mathbf{E}(\mathbf{r}, t) = \frac{1+i}{\delta\mu\omega}\hat{\mathbf{k}} \times \mathbf{E}(\mathbf{r}, t)$$
^{03/22/201}

Some representative values of skin depth Ref: Lorrain² and Corson

$$\frac{\omega}{c} n_R \approx \frac{\omega}{c} n_I \approx \sqrt{\frac{\mu \sigma \omega}{2}} \equiv \frac{1}{\delta}$$

Note that frequency given in

units of Hz
$$\Rightarrow \frac{\omega}{2\pi}$$

	σ (10 ⁷ S/m)	μ/μ ₀	δ (0.001m) at 60 Hz	δ (0.001m) at 1 MHz	
AI	3.54	1	10.9	84.6	
Cu	5.80	1	8.5	66.1	
Fe	1.00	100	1.0	10.0	
Mumetal	0.16	2000	0.4	3.0	
Zn	1.86	1	15.1	117	

Relative energies associated with field Electric energy density: $\varepsilon_b |\mathbf{E}|^2$

Magnetic energy density: $\mu |\mathbf{H}|^2$

Ratio inside conducting media:

$$\lambda = \frac{2\pi c}{\omega} = \frac{c}{f}$$

$$\frac{\varepsilon_{b} \left| \mathbf{E} \right|^{2}}{\mu \left| \mathbf{H} \right|^{2}} = \frac{\varepsilon_{b}}{\mu \left| \frac{1+i}{\delta \mu \omega} \right|^{2}} = \frac{\varepsilon_{b} \mu \omega^{2} \delta^{2}}{2}$$
$$= 2\pi^{2} \frac{\varepsilon_{b}}{\varepsilon_{0}} \frac{\mu}{\mu_{0}} \frac{\delta^{2}}{\lambda^{2}}$$

12

For $\frac{\varepsilon_b |\mathbf{E}|^2}{\mu |\mathbf{H}|^2} \ll 1 \implies$ magnetic energy dominates

Note that in free space

ze,
$$\frac{|\mathbf{u}_1|}{|\boldsymbol{\mu}_0|\mathbf{H}|^2} = 1$$

PHY 712 Spring 2021 -- Lecture 21

 $\varepsilon_0 \left| \mathbf{E} \right|^2$

Fields near the surface on an ideal conductor -- continued

For
$$\frac{\sigma}{\omega} >> 1$$
 $\frac{\omega}{c} n_R \approx \frac{\omega}{c} n_I \approx \sqrt{\frac{\mu \sigma \omega}{2}} \equiv \frac{1}{\delta}$
In this limit, $\sqrt{\frac{\mu \varepsilon}{\mu_0 \varepsilon_0}} = c \sqrt{\mu \varepsilon} = n_R + i n_I = \frac{c}{\omega} \frac{1}{\delta} (1+i)$
 $\mathbf{F}(\mathbf{r}, t) = e^{-\hat{\mathbf{k}} \cdot \mathbf{r}/\delta} \Re \left(\mathbf{F} e^{i \hat{\mathbf{k}} \cdot \mathbf{r}/\delta - i \omega t} \right)$

$$\mathbf{E}(\mathbf{r},t) = e^{-\mathbf{k}\cdot\mathbf{r}/\delta} \Re\left(\mathbf{E}_{0}e^{i\mathbf{k}\cdot\mathbf{r}/\delta-i\omega t}\right)$$
$$\mathbf{H}(\mathbf{r},t) = \frac{n}{c\mu}\hat{\mathbf{k}} \times \mathbf{E}(\mathbf{r},t) = \frac{1+i}{\delta\mu\omega}\hat{\mathbf{k}} \times \mathbf{E}(\mathbf{r},t)$$

Ζ

r_{II}

()

Fields near the surface on an ideal conductor -- continued

$$\mathbf{E}(\mathbf{r},t) = e^{-\hat{\mathbf{k}}\cdot\mathbf{r}/\delta} \Re \left(\mathbf{E}_{0} e^{i\hat{\mathbf{k}}\cdot\mathbf{r}/\delta - i\omega t} \right) \qquad \mathbf{r}_{\parallel}$$
$$\mathbf{H}(\mathbf{r},t) = \frac{n}{c\mu} \hat{\mathbf{k}} \times \mathbf{E}(\mathbf{r},t) = \frac{1+i}{\delta\mu\omega} \hat{\mathbf{k}} \times \mathbf{E}(\mathbf{r},t) \qquad \mathbf{0} \qquad \mathbf{z}$$

Note that it is convenient to express the EM fields in terms of the **H** amplitude:

$$\mathbf{H}(\mathbf{r},t) = e^{-\hat{\mathbf{k}}\cdot\mathbf{r}/\delta} \Re \left(\mathbf{H}_{0}e^{i\hat{\mathbf{k}}\cdot\mathbf{r}/\delta-i\omega t}\right)$$
$$\mathbf{E}(\mathbf{r},t) = \delta\mu\omega \frac{1-i}{2}\hat{\mathbf{k}}\times\mathbf{H}(\mathbf{r},t)$$

Boundary values for ideal conductor

Inside the conductor :

$$\mathbf{H}(\mathbf{r},t) = e^{-\hat{\mathbf{k}}\cdot\mathbf{r}/\delta} \Re \left(\mathbf{H}_0 e^{i\hat{\mathbf{k}}\cdot\mathbf{r}/\delta - i\omega t} \right)$$
$$\mathbf{E}(\mathbf{r},t) = \delta \mu \omega \frac{1-i}{2} \hat{\mathbf{k}} \times \mathbf{H}(\mathbf{r},t)$$

At the boundary of an ideal conductor, the **E** and **H** fields decay in the direction normal to the interface.

Ideal conductor boundary conditions:

$$\hat{\mathbf{n}} \times \mathbf{E} \Big|_{S} = 0$$
 $\hat{\mathbf{n}} \cdot \mathbf{H} \Big|_{S} = 0$

Wave guides – dielectric media with one or more metal boundary

Ideal conductor boundary conditions:

$$\hat{\mathbf{n}} \times \mathbf{E} \Big|_{S} = 0$$
 $\hat{\mathbf{n}} \cdot \mathbf{H} \Big|_{S} = 0$

Waveguide terminology

- TEM: transverse electric and magnetic (both E and H fields are perpendicular to wave propagation direction)
- TM: transverse magnetic (H field is perpendicular to wave propagation direction)
- TE: transverse electric (E field is perpendicular to wave propagation direction)

Analysis of rectangular waveguide

Boundary conditions at surface of waveguide: $E_{tangential}=0$, $B_{normal}=0$

Analysis of rectangular waveguide

$$\mathbf{y} = \mathbf{x} \begin{bmatrix} \mathbf{z} & \mathbf{z} \\ \mathbf{B} = \Re\left\{ \left(B_x(x, y) \hat{\mathbf{x}} + B_y(x, y) \hat{\mathbf{y}} + B_z(x, y) \hat{\mathbf{z}} \right) e^{ikz - i\omega t} \right\} \\ \mathbf{E} = \Re\left\{ \left(E_x(x, y) \hat{\mathbf{x}} + E_y(x, y) \hat{\mathbf{y}} + E_z(x, y) \hat{\mathbf{z}} \right) e^{ikz - i\omega t} \right\} \\ \text{Inside the dielectric medium: (assume ε to be real)} \\ \nabla \cdot \mathbf{E} = 0 \qquad \nabla \cdot \mathbf{B} = 0 \\ \nabla \times \mathbf{E} + \frac{\partial \mathbf{B}}{\partial t} = 0 \qquad \nabla \times \mathbf{B} - \varepsilon \mu \frac{\partial \mathbf{E}}{\partial t} = 0 \\ \nabla \times \mathbf{E} + \frac{\partial \mathbf{B}}{\partial t} = 0 \qquad \nabla \times \mathbf{B} - \varepsilon \mu \frac{\partial \mathbf{E}}{\partial t} = 0 \\ \nabla \times \mathbf{E} + \frac{\partial \mathbf{B}}{\partial t} = 0 \qquad \nabla \times \mathbf{B} - \varepsilon \mu \frac{\partial \mathbf{E}}{\partial t} = 0 \\ \end{bmatrix}$$

Solution of Maxwell's equations within the pipe:

Combining Faraday's Law and Ampere's Law, we find that each field component must satisfy a two-dimensional Helmholz equation:

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} - k^2 + \mu \varepsilon \omega^2\right) E_x(x, y) = 0.$$

For the rectangular wave guide discussed in Section 8.4 of your text a solution for a TE mode can have:

$$E_{z}(x, y) \equiv 0 \quad \text{and} \quad B_{z}(x, y) = B_{0} \cos\left(\frac{m\pi x}{a}\right) \cos\left(\frac{n\pi y}{b}\right),$$

with $k^{2} \equiv k_{mn}^{2} = \mu \varepsilon \omega^{2} - \left[\left(\frac{m\pi}{a}\right)^{2} + \left(\frac{n\pi}{b}\right)^{2}\right]$

Maxwell's equations within the pipe in terms of all 6 components:

$$\frac{\partial B_x}{\partial x} + \frac{\partial B_y}{\partial y} + ikB_z = 0.$$

$$\frac{\partial E_x}{\partial x} + \frac{\partial E_y}{\partial y} + ikE_z = 0.$$

$$\frac{\partial E_z}{\partial x} - ikE_y = i\omega B_x.$$

$$ikE_x - \frac{\partial E_x}{\partial x} = i\omega B_y.$$

$$\frac{\partial E_y}{\partial x} - \frac{\partial E_x}{\partial y} = i\omega B_z.$$

For TE mode with $E_z \equiv 0$

$$B_{x} = -\frac{k}{\omega}E_{y}$$
$$B_{y} = \frac{k}{\omega}E_{x}$$

$$\frac{\partial B_z}{\partial y} - ikB_y = -i\mu\varepsilon\omega E_x.$$

$$ikB_x - \frac{\partial B_z}{\partial x} = -i\mu\varepsilon\omega E_y.$$

$$\frac{\partial B_{y}}{\partial x} - \frac{\partial B_{x}}{\partial y} = -i\mu\varepsilon\omega E_{z}.$$

03/22/2021

PHY 712 Spring 2021 -- Lecture 21

TE modes for rectangular wave guide continued:

$$E_z(x, y) \equiv 0$$
 and $B_z(x, y) = B_0 \cos\left(\frac{m\pi x}{a}\right) \cos\left(\frac{n\pi y}{b}\right)$,

$$E_{x} = \frac{\omega}{k} B_{y} = \frac{-i\omega}{k^{2} - \mu \varepsilon \omega^{2}} \frac{\partial B_{z}}{\partial y} = \frac{-i\omega}{\left[\left(\frac{m\pi}{a}\right)^{2} + \left(\frac{n\pi}{b}\right)^{2}\right]} \frac{n\pi}{b} B_{0} \cos\left(\frac{m\pi x}{a}\right) \sin\left(\frac{n\pi y}{b}\right),$$

$$E_{y} = -\frac{\omega}{k}B_{x} = \frac{i\omega}{k^{2} - \mu\varepsilon\omega^{2}}\frac{\partial B_{z}}{\partial x} = \frac{i\omega}{\left[\left(\frac{m\pi}{a}\right)^{2} + \left(\frac{n\pi}{b}\right)^{2}\right]}\frac{m\pi}{a}B_{0}\sin\left(\frac{m\pi x}{a}\right)\cos\left(\frac{n\pi y}{b}\right).$$

Check boundary conditions:

$$\mathbf{E}_{\text{tangential}} = 0 \text{ because: } E_{z}(x, y) \equiv 0, \ E_{x}(x, 0) = E_{x}(x, b) = 0$$

and $E_{y}(0, y) = E_{y}(a, y) = 0.$
$$\mathbf{B}_{\text{normal}} = 0 \text{ because: } B_{y}(x, 0) = B_{y}(x, b) = 0$$

and $B_{x}(0, y) = B_{x}(a, y) = 0.$

PHY 712 Spring 2021 -- Lecture 21

Solution for m=n=1

$$k^{2} \equiv k_{mn}^{2} = \mu \varepsilon \omega^{2} - \left[\left(\frac{m\pi}{a} \right)^{2} + \left(\frac{n\pi}{b} \right)^{2} \right]$$

$$\mathbf{B} = \Re \{ (B_x(x, y, z)\hat{\mathbf{x}} + B_y(x, y, z)\hat{\mathbf{y}} + B_z(x, y, z)\hat{\mathbf{z}})e^{-i\omega t} \}$$

$$\mathbf{E} = \Re \{ (E_x(x, y, z)\hat{\mathbf{x}} + E_y(x, y, z)\hat{\mathbf{y}} + E_z(x, y, z)\hat{\mathbf{z}})e^{-i\omega t} \}$$

In general: $E_i(x, y, z) = E_i(x, y)\sin(kz)$ or $E_i(x, y)\cos(kz)$
 $B_i(x, y, z) = B_i(x, y)\sin(kz)$ or $B_i(x, y)\cos(kz)$

03/22/2021

PHY 712 Spring 2021 -- Lecture 21 $= \frac{p\pi}{d}$

$$k^{2} = \left(\frac{p\pi}{d}\right)^{2} = \mu\varepsilon\omega^{2} - \left(\frac{m\pi}{a}\right)^{2} - \left(\frac{n\pi}{b}\right)^{2}$$
$$\Rightarrow \omega^{2} = \frac{1}{\mu\varepsilon}\left(\left(\frac{m\pi}{a}\right)^{2} + \left(\frac{n\pi}{b}\right)^{2} + \left(\frac{p\pi}{d}\right)^{2}\right)$$

Wave guides – dielectric media with one or more metal boundary

Simple optical pipe TE or TM modes

Waveguide terminology

- TEM: transverse electric and magnetic (both E and H fields are perpendicular to wave propagation direction)
- TM: transverse magnetic (H field is perpendicular to wave propagation direction)
- TE: transverse electric (E field is perpendicular to wave propagation direction)

Coaxial cable

TEM modes

Electromagnetic waves in a coaxial cable -- continued Top view: Example solution for $a \le \rho \le b$

$$\mathbf{E} = \hat{\boldsymbol{\rho}} \Re \left(\frac{E_0 a}{\rho} e^{ikz - i\omega t} \right) \qquad \text{Find}:$$

$$k = \omega \sqrt{\mu \varepsilon}$$

$$\mathbf{B} = \hat{\boldsymbol{\varphi}} \Re \left(\frac{B_0 a}{\rho} e^{ikz - i\omega t} \right) \qquad E_0 = \frac{B_0}{\sqrt{\mu \varepsilon}}$$

$$\hat{\boldsymbol{\rho}} = \cos \phi \, \hat{\mathbf{x}} + \sin \phi \, \hat{\mathbf{y}}$$

$$\hat{\boldsymbol{\varphi}} = -\sin \phi \, \hat{\mathbf{x}} + \cos \phi \, \hat{\mathbf{y}}$$

Poynting vector within cable medium (with μ, ε):

$$\langle \mathbf{S} \rangle_{avg} = \frac{1}{2\mu} \Re \left(\mathbf{E} \times \mathbf{B}^* \right) = \frac{\left| B_0 \right|^2}{2\mu \sqrt{\mu \varepsilon}} \left(\frac{a}{\rho} \right)^2 \hat{\mathbf{z}}$$

Electromagnetic waves in a coaxial cable -- continued Top view:

Time averaged power in cable material:

$$\int_{0}^{2\pi} d\phi \int_{avg}^{b} \rho d\rho \left(\left\langle \mathbf{S} \right\rangle_{avg} \cdot \hat{\mathbf{z}} \right) = \frac{\left| B_{0} \right|^{2} \pi a^{2}}{\mu \sqrt{\mu \varepsilon}} \ln \left(\frac{b}{a} \right)$$