PHY 712 Electrodynamics
10-10:50 AM MWF Online
Notes for Lecture 22:
Sources of radiation
Start reading Chap. 9

A. Electromagnetic waves due to
specific sources

B. Dipole radiation patterns
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y .
Maxwell’s equations
Microscopic or vacuum form (P =0; M =0):
Coulomb's law : V-E=p/eg,
Ampere-Maxwell'slaw: VxB - L %—]f Hod
c’
Faraday's law : VxE+ aa—]j =0
No magnetic monopoles: V:-B=0
oot = ]
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Since Maxwell’s equations were introduced and used in Chapters 6-8, we have focused on
the properties of the fields themselves. Now we will begin to study how these fields are
produced by particular sources. The sources that we will consider are harmonic in time
and their spatial form (considered to be localized in space) is represented by a
multiplicative factor. More generally, we are considering one component in the Fourier
transform for the source function. The results are quite different from the Liénard-
Wiechert potentials discussed a few weeks ago. In this slide, Maxwell’s equations are
presented for the case that the sources are completely represented by the charge and
current densities.



wiwaailaal HULUI 1A Y

V-B=0 — B=VxA
VxE+a—B:O = Vx E+6—A =0
ot ot
E+8—A:—VCD
ot
or E=—VCI)—6—A

ot

It is convenient to express the coupled vector fields in terms of the scalar and vector
potentials as we have discussed previously.



Formulation of Maxwell’'s equations in terms of vector and
scalar potentials -- continued
) 1 0D,
Lorentz gauge form - -require: V- A, +— Py =0
C
1 0’®
—VZCDL +—272L:,0/80
1 0’°A
2
-V AL +C—2T2L = ,UOJ
General equation form:
2
R
c” ot /(4
D(r,1) p(r,1)/(4rg,)
A (vt HoJ (x,1)/ (47)
¥(r,t)= 0 (=70
A, (r,1) HoJ ,(r,0) [ (47)
A (r,1) HoJ . (x,1) [ (47)
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We will focus our attention on the Lorentz Gauge representations. In this case, the scalar
potential and each of the three Cartesian components of the vector potential each have to
solve an inhomogeneous differential equation of the same form.



Solution of Maxwell’s equations in the Lorentz gauge -- continued

/c))

Glr,z;r',1') = ﬁ 5(t'—(t —[r-r’

Solution for field ¥(r,?):
‘P(r,t): Y, (r,t)+

[&*r]ar ; _1 7 5(r’—(t —é‘r —r'\D et
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For a spatially localized source, the physically meaningful solution can be written as an
integral over the source time t’ and space r’ as discussed previously before.



Electromagnetic waves from time harmonic sources
Charge density: p(r,t)=R (ﬁ(r, w)e ™ )

Current density:  J(r,7)= fﬁ(j(r, a))e—ia}t)

Note that the continuity condition applies:

) 9 3(r)=0 = -iap(r0) + V-3 (r.0) =0
Generalsource: f(r,¢)= fR(f (r, a))e_m)
For f(r,a))z 1 :5(13‘0)
4re,
or F(raa)):ﬂj;(r’a))
4r

Now we specialize to the pure harmonic time dependence. Mathematically, we will
evaluate the sources with the complex function exp(-iwt), taking the real part at the end of
the analysis. Note that because we need to conserve charge, the continuity equation
must satisfied which consequently means that the current and charge densities are
functionally related.



Electromagnetic waves from time harmonic sources —
continued:

‘P(r,t) =¥, (r,t)+
[&’r|ar L s t'—(t—l‘r—r") f(r',r)
‘r—r" c
Plr,w)e ™™ =¥, (r,o) ™ +

J.dSI"’J‘ dt' ! 5£t'—([ — l‘l’ — r")J?(rv’ a))efia)t'
C

r=r]

ii”‘r—r"
c ~

= {Pf=0 (r, a))e‘i“” + J.a”r' ‘er - r" f(r', w)e""‘”
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Putting the form of the source term in the integral, we can first perform the integral over
the source time t/, resulting in the last equation of the slide. Notice that the full solution of
the differential equation also may have a solution to the inhomogeneous equation as

represented by the last term.



Electromagnetic waves from time harmonic sources —
continued: ) w
For scalar potential (Lorentz gauge, k =—)
C
5 5 1 ; eik‘r—r“
DO(r,w)=D,(r,w)+ Jd r' o(r',m),
(r,0)=d,(r,0) 47z, ‘r—r"p( )
@) ~
where | V?+— |®(r,®)=0
C
) 10}
For vector potential (Lorentz gauge, k = —)
C
B ( ) ~ ( ) 1, J'd3 eik\r—r'\ ~( )
Alr,w)=A (r,o)+—|dr' J(r'\w),
0 4 ‘r — r"
o )~
where | V2 +— |A,(r,0)=0
c
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From the results on the previous slide, we can explicitly write out the solutions for the
scalar and vector potentials in terms of the charge and current densities.



Electromagnetic waves from time harmonic sources —
continued:

Useful expansion :

= ik ik R )1, (€)Y (F)

Spherical Bessel function : j, (k)
Spherical Hankel function : 4, (kr) =J (kr) +in, (kr)

ik‘r—r"

47r‘r r ‘

&)(r, a)) = Cfo(r, a))+ Z%m (r, o), (f")

G, 0) = — I d’r p(x', @), (kr iy (ke )Y "o ()
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In order to evaluate the equations on the previous slide, we can make use an exact
expansion in terms of spherical harmonic functions and spherical Bessel and Hankel

functions.

The proof of this expansion is not trivial, but some details are available in

Jackson (near Eq. 9.98) and from the NIST website https://dImf.nist.gov/10.60. It

naturally follows that the scalar potential can be expressed as a sum of spherical harmonic

functions time corresponding radial forms.
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Electromagnetic waves from time harmonic sources —
continued:

Useful expansion :

=ik jl(kr< y’l(kr> )Ylm (f.)Y*lm (f.’)
Im

ik|r—r|
47r‘r - r"
Spherical Bessel function : j, (k)
Spherical Hankel function : 4, (kr) =J (kr) +in, (kr)

K(r, a)) = ZO (r, a))+ ; a, (r, a))Y,m (f')

a, (r,a)): ikﬂojd3r'j(r"a))jz (kr< )h,(kr> )Y*lm (f')
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It naturally follows that the vector potential can be expressed as a sum of spherical
harmonic functions time corresponding radial forms.
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Forms of spherical Bessel and Hankel functions:

)= ()=
x ix
i (x) _ smgx) B cos(x) i (x) _ _(1 . i) o
X X X)) X
jz(x):(%—ljsin(x)—3C02(x) hz(x):l-(lﬁ_%j e
X X X X X X
Asymptotic behavior:

x<<l = j(x)=

x>>1 = h(x)~(—i
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These relationships of spherical Bessel functions are given on page 426 of Jackson.

12



Digression on spherical Bessel functions --

Consider the homogeneous wave equation
2
w ~
[VZ +c—2JCDO(I‘,a)) =0

Suppose @, (r,w) =y, (r)Y, (F)
= v, (r) must satisfy the following for k =w/c:
L d> 2d I(I+))

_+___
dr’*  rdr P’

General Bessel function equation:

(dz +2i_l(ltl)+ljwz(x):0 =y, (r)=w(kr)

ﬁ x dx X

+k2}y,m(r) =0
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This material summarizes some of the results from Seciont 9.6 of Jackson
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Electromagnetic waves from time harmonic sources —
continued:

r.0)= 0, (r.0)+ 29, (r. o), ¢)
—J.d3r'p r' a))j,(kr ), (kr ) “m (')
X( ,0)=A,(r,0) ;alm (r,0),,(F)

a,, (r,0) = iku, [ &' 3 (', @), (ke (ke )Y i ()

>

RSN
3
—
X
II

For r >> (extent of source)

@, (r, o)~ —kh k) j ’r' p(r', @), (k)Y 1 ()

0

a, (r, o)~ ikuh, (kr)J. *r' (e, o), (k)Y (f)
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What is the rational/significance of the last two equations?
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Some details:

B(r.0)= 0, (r.0)+ Tt (o 7

@, (1, @) =%ffﬂﬁ(r’,w)j,(kr<)hl(kr>)Y*lm(f~')
Z%IdQ'Y*zm(f')[hz(k")I"'z d”'jz(kr')[?(l",w)+j,(kr)Tr'2 dr'h,(kr')[)(r',a))]

For » >> (extent of source)

~ k ~ . * A

i (r-0) =~y (k) *r B, ) (k)Y i ()
0

4, (r, @) ~ ikuyhy (kr) | ' 3 (', @) j, (k' )Y 1 (F')
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Do you agree with these results?
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Electromagnetic waves from time harmonic sources —
continued -- some details:

(plm(r,a)):;—jd3r'p(r',a))]l(kr<)hl(ki;)Y m (F")
0

ik f ! ] . r . T 1 ’ ] ’
=g—[h,(kr) [r2dr'p,, (v @) Uy + j, () [ 2 dr’ py, (', o (hr )]
0 0 r oY
[} — [} ' * Ay Z
where p,,(r\0) = [dQ)p, (r',0)Y,, )

note that for »> R, where p, (r,®)~0, ¥ >R

0

. ik [ PR
w[m(r’a))zg_hl(kr)jr 2dr p[m(r ’a)).][(kr)
0

Similar relationships can be written

fora,, (r,®) and J(r',0). \
X

03/23/2020 PHY 712 Spring 2020 -- Lecture 21 16

From this analysis, for a source confined within a sphere of radius R, the radiation field for
the Im component of the field has a radial form proportional to a spherical Hankel
function.



Electromagnetic waves from time harmonic sources —
continued:

For r >> (extent of source)

~ k ~ . ' * )
@)= (k) " B(x", ) (k") ()

0

a, (r, )~ ikuh, (kr)J. *r' (e, ), (kY (f)

Note that 5(r',)and J(r', @) are connected via the

continuity condition: —im p(r,w)+V- j(r, ®)=0
- k ~ . ' * Ay
B r-0) == (k) " B, ) (k") ()

0

G [ R
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Some further relations can be derived due to the continuity equation for the current
density and the charge density.



Electromagnetic waves from time harmonic sources —
continued:

Various approximations:

ikr
fr >> 1 :hl(kr)z(—i)”l%
. (kr')l
kr'<<1 kr')x ————
<<l =)~ o
Lowest (non-trivial) contributions in / expansions:

- k ~ kr' .« .
B (ro0)= (k) [d'r p(r.0) 51", (F)
0

(1, 0) = ik ptohy (k) [ 7 T (1, 0) Yoy (F')
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The previous slides gave rigorous results far from the source. In this slide we consider
further approximations. The kr'<<1 case is also referenced as the long wavelength
approximation.
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Some details -- continued:  (assuming confined source)
Recall continuity condition: —iw p(r,®)+V-J (r,)=0
—ior p(r,w)+rV- j(r,a))

Id3r r /B(r,a))zij.d% rV-j(r,a))
_ L s _
= ia)-[d rJ(r,o0)=p(w)

Here we have used the identity:
V- (yV)=Vy-V+y(V-V)
We have also assumed that

lim (xJ (r,)) =0

r—>00

03/23/2020 PHY 712 Spring 2020 -- Lecture 21

Dipole approximation continued.
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Electromagnetic waves from time harmonic sources —
continued:

Lowest order contribution; dipole radiation:

Define dipole moment at frequency w:

p(0)= [ £p(r,0)= _i [@r J(r.0)

r r
. ik N
) __ et le

(r,o) 47[gop(a)) r( +krj -

Note: in this case we have assumed a restricted extent
of the source such that kr'<<1.
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Dipole approximation continued.
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Electromagnetic waves from time harmonic sources —

continued:
E(r, a)) = —VCT)(r? a)) + ia)K(r, a))
_ 47;0 %(kz((f'xp(w))xf'ﬁ(?’r(r‘p(i)z))—P(w)

E(r, a)) =Vx K(r, a))

o)1

dre,c” 1 ikr

Power radiated for kr >>1:

0 =rr <S>avg 2 3 ER( E(r,0)xB (r,a)))
2k

A2
’uo‘rxp xr‘

327
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Dipole approximation continued.
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Example of dipole radiation source

~

J(r,o)=2J,e""" plr,o)= ‘.]" cos e
—IoR

Z(I‘, a)) = ijO (lk:uo )_[ ’,.'2 dr'e_r'/RhO (kl"> )JO (kl"<)
0

~

D(r,w)=— Jok cos HI r2dre”" " n(kr, ), (kr)
0

E,R

Evaluation for » >> R :

ikr 3
K(r’a)):ijoluo ‘ 2K

r (1 +k*R? )z

ikr . 3
D(r,0)= T cos6 e—(l + Lj 2R
o 1 vTa;
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Comparison of exact asymptotic results with dipole approximation.
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Example of dipole radiation source -- continued
Evaluation for » >> R :

eikr 2R3
r(1+82R>f
ikr . 3
D(r,w)= Jok cosd e—(l +LJ Lz
E,W r kr (1+k2R2)
Relationship to pure dipole approximation (exact when kR=>0)

) 1 3 STR’J,
p(w)EJ‘dzr rp(r,a))z—gj‘d% J(I',CO)=_ ”ia) 0

K(l’, a)) =2J, 4

z

ikr

Corresponding dipole fields: A (r,»)=- L@ p(w) ¢

4r r
b(r,0) = p(w).f(nije
dre, kr ) r
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Comparison of exact asymptotic results with dipole approximation — continued.
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