PHY 712 Electrodynamics
10-10:50 AM MWF Online
Notes for Lecture 24:
Complete reading of Chap. 9 & 10
A. Superposition of radiation

B. Scattered radiation
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In this lecture, we will continue to focus on radiation from sources with pure harmonic
time dependence with frequency omega, considering effects of superposition of multiple
such sources (leading to interference) and also considering (re)radiation due to scattering
of electromagnetic waves.



21|[Mon: 03/22/2021 | Chap. 8 EM waves in wave guides

22 Wed: 03/24/2021 |Chap. 9 Radiation from localized oscillating sources  [#15  [03/26/2021
23 |Fri: 03/26/2021 | Chap. 9 Radiation from oscillating sources #16 |03/29/2021
24 Mon: 03/29/2021 |Chap. 9 & 10 Radiation and scattering #17 03/31/2021
25 |Wed: 03/31/2021 Chap. 11 Special Theory of Relativity

26 |Fri: 04/02/2021  |Chap. 11 Special Theory of Relativity

PHY 712 -- Assignment #17

March 29, 2021
Finish reading Chapters 9 and 10 in Jackson .
1. Work problem 9.16(a) in Jackson. Note that you can use an approach similar to that discussed in Section 9.4 of the

textbook, replacing the "center-fed" antenna with the given antenna configuration.
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The assigned homework deals with radiation from an antenna with a slightly different
configuration than covered in the textbook and in the lecture notes.
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“Dynamics of Charge
Carrier Traps in Organic
Semiconductors”

Organic semiconductors (OSCs) are becoming an integral part of our
lives as active components of various optoelectronic devices given
their low-cost processing, light weight, chemical versatility by
molecular design, and compatibility with flexible substrates. These
systems undergo considerable electronic and structural
transformations during device fabrication and operation, which can
profoundly impact their performance and stability. Characterization
techniques that can elucidate the mechanisms of the time-dependent
transformations occurring in these materials and devices are needed
to guide the design and processing to yield high-performance and
stable devices. In this dissertation, a highly efficient method is
introduced to elucidate the microscopic processes occurring within
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Electromagnetic waves from time harmonic sources —
review:

For scalar potential (Lorentz gauge, k = Q)
c
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For vector potential (Lorentz gauge, k = —)
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Review of equations that we have been using for the time Fourier transforms of the scalar
and vector potentials due to their corresponding Fourier transforms of the charge and
current densities.



Consider antenna source (center-fed)
Note — these notes differ from previous formulation d/2 <> d

z
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Specifically, consider an antenna. For convenience, we are using a slightly different

notation from the previous lecture as noted at the top of the slide.




Consider antenna source -- continued
J(r.0)=2sin(k(d~|2[))5(x)5(y) for ~d<z<d
for k=2 =% n=123...
c d
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The plot indicates how the current varies along the z axis of the antenna for the center-fed
configuration.



Consider antenna source -- continued
J(r.0)=2lsin(k(d -|z[))8(x)8(y) for —d<z<d

w

c

Vector potential from source:
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03/29/2021 PHY 712 Spring 2021 -- Lecture 24

z

J.d3r'e_ikf'r'j(r',a))
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Evaluation of the vector potential far from the antenna.




Consider antenna source -- continued

I sz e sin(k(d —|]))
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ez r

K(r,a)) ~ 5t
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L Uy e [cos(kd cos@)—cos(kd)}
=z 21
47 kr sin” 6

In the radiation zone :

~

B(r,»)=V xA(r,0)~ ikt x A(r,w)
E(r, )~ —ikck x (f x A(r, a)))
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Some details for evaluating the power per unit solid angle.



Consider antenna source -- continued
dP  uyc IE cos(kd cos 8)—cos(kd ) ’
dQ 8 sin
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Plot of the power distribution as a function of angle for this case.




Consider antenna source -- continued

dP _ pc Jz cos(kd cos 8)—cos(kd ) ’

dQ 8r’ sin &
For kd =nx:

r
2
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Polar plots of the power distribution.
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Radiation from antenna arrays

2N+l a

J(r, )= 2l sin(k(d —|z|))z_;5(x—(N+ 1-j)ap(y) for —d<z<d

T X

C
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Now consider the case of several antennas, in this case each antenna is oriented along the
z-axis and 2N+1 of them are arranged in a line along the x-axis.
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Radiation from antenna arrays -- continued

Vector potential from array source :
zk\rf |

Ar,0)= ﬂojaﬂ' J(r', o) Jd3 e Y (r', o)

r—r

2N+

j(r,w):ilsin(k(d—\z\))z ~(N+1-j)a)(y) for —d<z<d
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K(r,a))z iﬂﬂ[ ieikajsinecowJ I]{dz oikzeost sin(k(d _‘Z‘))
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Analyzing the same equations as before, keeping the leading terms for the limit that
kr=>infinity. Here we see that the x-axis dependence involves evaluating a geometric
series which can be done analytically as shown.



Radiation from antenna arrays -- continued
In the radiation zone :

~

B(r,0)=VxA(r,0)~ ikt x A(r, »)
E(r, )~ —ikct x (f' x A(r, a)))

2.2
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Carrying out the integrations and simplifying the expressions, we get the results. The plots
here refer to phi=0, which corresponds to the observation of the radiation along the x-axis.



P _ pe 2 cos (kd cos @) — cos(kd ) ’ Sin(%ka(2N+l)sin9cos¢) ’
dQ 8z’ sin @

sin(%ka sinécos gp)

Example for ¢ =0, N =10, kd =7 =2ka
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Additional amplitude patterns can be obtained by
controlling relative phases of antennas.
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Plot of the power for another case. Obviously, there is a lot of variety with antenna arrays
which are used extensively for communications and other technologies.



Dipole radiation in light scattering by small (dielectric) particles
_—
—— @ — E.
l sc
Einc
Hinc
A ikk,r 1 %
Einc = EOEOe ’ Hinc = kO X Einc
Hy€
In electric dipole approximation :
1 e . . 1 .
ESC = kz_((rxp)xr) HSC = l.><ESC
4re, r C
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Now consider a different radiation source — that is re-radiation from matter interacting
with light (such as sunlight). Here we will simplify the analysis and assume that the matter
is in the form of uniform sphere. This topic is covered in Chapter 10 of Jackson.



Dipole radiation in light scattering by small (dielectric) particles
—— @ — E. A
5 Y ikkg -r
~ H Einc = SOEOe !
l sc 1
Einc H, =—Kk,xE;
Hinc Hac
In electric dipole approximation:
. . ikr
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We will assume that the incident light is in the form of an ideal plane wave, and analyze the
re-radiated light as a spherical wave far from the particle itself. The unit vectors epsilon_0
and epsilon reference the incident polarization of the light and the scattered polarization

direction of the light, respectively. The cross section is defined as the scattered power
per unit incident power.



Recall previous analysis for electrostatic case:
Boundary value problems in the presence of dielectrics
— example:
_—
 —
_—
R
_—
EO
> 7
£
€0
Atr=a: ¢ 6®<(r) =&, 8(D>(r)
or or
o0 (r) _ o0, (r)
03/29/2021 PHY 712 Spring 2021 -- Lecture 24 ag = ag 17

Analyzing the source of re-radiation, we need to recall how a spherical dielectric of radius a
interacts with a constant electric field. We can use the results we obtained in Chapter 4

when we considered the situation as an electrostatic boundary value problem.
direction is the direction of the incident electric field, not the wave vector direction.

Here the z
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Boundary value problems in the presence of dielectrics
— example -- continued:
oD _(r)

oD _(r)
ed Atr=a: == =
> 4r'P(cos0) T Ty TR T,
0 oP_(r) _ o0, (r)

i(BH j(cose) o0 a6

1=0 For r >0 ®_(r)=—E,rcosf
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Solution - - only / =1 contributes
B, =-E,

AIZ_;EO C = mcon
2+¢/ g, 2+¢/¢g,
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These are the results from the electrostatic case discussed previously.
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Boundary value problems in the presence of dielectrics
— example -- continued:

2+¢/¢g,

24¢lg, )7

1) 4 —Adrgle | SLS0 T
®>(r)=—[7—(MJa—ZJEOCOS‘9 p=4za 80[6'/6‘0+2

®_(r)= —(;JEO rcosf Induced dipole moment:

—47\ T T T

2
ra ——————
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Continued results obtained previously for the electrostatic problem.
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Estimation of scattering dipole moment:

Suppose the scattering particle is a dielectric sphere
4 With permittivity ¢ and radius a:
0
t ) V,
—k, \Ai\.
ele,—1
p=dra’s,| —>—

_2 iklA(O‘r
£l gy +2 Ky Eie =Vokoe

Scattering cross section:

21~ 2 4
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DA e s [v-p)
v,-E. (47¢,E,)
Ve, —1[
cle, — 2
4 6 A oA
=k*a®|—2— |v-v,
&lg,+2
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Jumping back to the scattering problem, assuming that the same mathematics can be
translated to this case -- Here we have used bold epsilon to reference the polarization
directions. These directions are always perpendicular to the light propagation directions.
The not bold epsilons indicate the permittivity functions which are functions of the
harmonic frequency of the light involved. The final result was derived by Lord Raleigh.



https://www.britannica.com/biography/John-William-Strutt-3rd-Baron-Rayleigh

WRITTEN BY: R. Bruce Lindsay
See Article History

Alternative Titles: John William Strutt, 3rd Baron Rayleigh of Terling Place

Lord Rayleigh, in full John William Strutt, 3rd Baron Rayleigh of Terling Place, (born November
12, 1842, Langford Grove, Maldon, Essex, England—died June 30, 1919, Terling Place, Witham,

Essex), English physical scientist who made fundamental discoveries in the fields of acoustics and

optics that are basic to the theory of wave propagation in fluids. He received the Nobel Prize for

Physics in 1904 for his successful isolation of argon, an inert atmospheric gas.
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Some information about Lord Rayleigh on the web.
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Scattering by dielectric sphere with permittivity € and radius a:
A For E;,. polarized in scattering plane:
kO
0
r do - gle,—1 :
—(r,v;ko,vo) ==k*a’|——| |v-¥,
ﬁ A dQ El&gy+2
A v 2
A% ele,—1
0 =k*a®|—="—| cos’ @
Elgy+2
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In this analysis, we consider the case where the incident wavevector (along the vertical

axis) and the polarization direction (epsilon0) are in the same plane as the observed

scattered light (direction of \hat{r}).

In this case , the dot product of the incident and

scattered polarizations give a factor of cos(theta) as show.
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Scattering by dielectric sphere with permittivity € and radius a:
For E;,,. polarized perpendicular to

A

k scattering plane:
0 dG A A D A 4 6 8 / 80 _1 A A 2
—( ,v;ko,vo):ka _ v,
\9 dQ gle,+2
r V.9
"0 Vv

2
— k4a6 (C; / (90 _1
/ Ele, +2
Assuming both incident polarizations are equally likely,

average cross section is given by:

2
do (. ~ » 4 k*a®|e/e,—1
—(r,v;ko,vo) = 0 (c0320+1)
dQ2 2 |e/g,+2
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In this case, the incident wavevector (along the vertical axis) and the observed scattered
light (direction of \hat{r}) are as before and again define the scattering plane. However,
the polarization direction of incident light (epsilon0) and the polarization direction of the
scattered light (epsilon) are both perpendicular to the scattering plane and thus are parallel
to each other, given 1 for their dot product.  The last result indicates the cross section of
the total scattered light assuming both polarizations are equally likely.
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The plot shows the angular dependence of the scattered light as a function of the angle

theta.

Scattering by dielectric sphere with permittivity € and radius a:

A
k 46 2
0 do (. ¢ . ka|8/80—1| >
—(r,s;ko,so) = (cos 0+1)
0 dQ 2 |e/g,+2|
A
r A
8 2.0
~
8 134
16
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12
L0 T T T T T T T T
0 0 40 50 80 100 120 140 160 180
0
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In addition to the angular dependence of the scattered light, Raleigh scattering depends of
the wavevector as k* which has the corresponding wavelength dependence indicated on
this slide.  The figure from the web shows the variation of wavelength for visible light.
The analysis of Raleigh scattering thus tells us why the sky at mid day is blue and why it
tends to be red at sun rise and sunset.
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Brief introduction to multipole expansion of electromagnetic
fields (Chap. 9.7)

Sourceless Maxwell's equations

in terms of E and H fields with time dependence e
VxE=ikZH VxH=—-ikE/Z,

V-E=0 V-H=0

wherek=w/c and Z,=./y, /€,

Decoupled equations:

(V2 +*)E=0 (V2 +*)H=0
H--—vxg E-%vuH
k k

0
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In the next few slides, we go over material presented in Section 9.7 of your textbook. |
have personally never used this formalism, but recognize it as a powerful tool for analyzing
fields from localized sources in terms of the fields themselves rather than using scalar and
vector and scalar potentials. Please review this material as time permits.
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Multipole expansion of electromagnetic fields -- continued

Note that:
(V?+ £*)(r-E)=0 (V2+ £*)(r-H)=0

Convenient operators for angular momentum analysis

Define: El_(rxV)
i

Notethat r -L=0
v 10 I
rort
Eigenfunctions:

’ B R PRI PO S i -
LY, (0.)= Lmeag(mneag}smz@M}Y,m(am 1(I+1)Y,,(0.4)
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Multipole expansion of electromagnetic fields -- continued

Magnetic multipole field:
w L(1+1)
"k

r -E=0
L-E, =I(I+1)Z,g k)Y, (0.4)

r -H g,(k)Y,,(0.9)

spherical Bessel function

Electric multipole field:

v EE =2, l(l,: D /)y, 0.9

r -HE =0 spherical Bessel function

L-HE =1(1+1) £, (kAT (6.9)
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Multipole expansion of electromagnetic fields -- continued

Vector spherical harmonics: (for / > 0)
1
X, (0,¢)=————LY, (6,

Orthogonality conditions:
J.dQ X/'m'* (97 ¢) ' le (97 ¢) = é‘/l'é‘mm'
[d0X,, (0.6)-(rxX,,0.4))=0

General expansion of fields:

H= Z{aﬁ,ﬁ(kr)xlm(&@ —éa% V(g (kr)X,, (0. ¢))}

E= Z[;av x(i(k)X,, (0.9)) + a2, (k)X (6. ¢)}
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Multipole expansion of electromagnetic fields -- continued

Time averaged power distribution of radiation far from source:
ar_z,
dQ 2k’

2

> )@ X, (0.9)xE+a,X,,(0,4) ]

Im

For a pure multipole radiation with either a;, or a, :

dP Z
a0~ zelnl e @.0F

2 1 2 2 2
X @0 =5 (2m + (em) (=m0 [ mem 0]y
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For example: /=1

3 .
X,,(0.0) = gsm2 0

g _ 3 (14 cos?
X, 0.9 =[X,, .9 =—(1+cos’0 )

03/29/2021
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For example: /=2

15 . 5 5
|X20(6',¢)|2 = gsm2 6 cos’f |X21(9,¢)|2 = E(l —3cos’ @+ 4cos* 9) |X22(9,¢)|2 = E(l —cos’ 6’)
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