PHY 712 Electrodynamics
10-10:50 AM MWF Online

Discussion for Lecture 27:

Finish Chap. 11 and begin Chap. 14

A. Electromagnetic field transformations &
corresponding analysis of Liénard-Wiechert
potentials for constant velocity sources

B. Radiation by moving charged particles

04/05/2021 PHY 712 Spring 2021 -- Lecture 27 1

In this lecture we will continue to discuss the electromagnetic fields produced by a moving
charged particle using the Lienard-Wiechert potentials. First we need to make sure that
we obtain consistent results with Lecture 26. Then we will start to discuss the results from
more general trajectories.



21 (Mon: 03/22/2021 |Chap. 8 EM waves in wave guides
22 \Wed: 03/24/2021 |Chap. 9 Radiation from localized oscillating sources | #15 |03/26/2021
23 |Fri: 03/26/2021 |Chap. 9 Radiation from oscillating sources #16 03/29/2021
24 |Mon: 03/29/2021 |Chap. 9 & 10 Radiation and scattering #17  03/31/2021
25 |Wed: 03/31/2021 |Chap. 11 Special Theory of Relativity #18 |04/05/2021
126 ||Fri: 04/02/2021  |Chap. 11 Special Theory of Relativity
27 |Mon: 04/05/2021 |Chap. 11 Special Theory of Relativity #19 |04/09/2021
Wed: 04/07/2021 |No class Holiday
28 ||Fri: 04/09/2021  |Chap. 14 Radiation from accelerating charged particles
29 (Mon: 04/12/2021 |Chap. 14 Synchrotron radiation
PHY 712 -- Assighment #19
April 05, 2021
Continue reading Chapter 11 in Jackson .
1. Supply some of the intermediate steps for deriving the E and B fields resulting from a particle of charge g moving along the
x-axis at constant speed v, measured at a point a distance b along the y-axis.

The homework from today’s lecture involves deriving some of the details of today’s lecture.



Comment: Some of you have been looking at textbooks
(such as Zangwill) and sources available on the internet and
finding different equations from those presented in these
lecture notes and in Jackson. That is a good thing in
general, however please be aware that there are different
units (Sl for example) and different conventions for 4-
vectors (some using different ordering of space and time,
some using imaginary (i) for the time-like portion). Since
we are using Jackson for now, it will good to make sure that
you are OK with those equations as well.
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4 PM

PHYSICS THURSDAY

COLLOQUIUM APRIL 8, 2021

“Can Next-Generation 6G Mobile
Communications Above 100 GHz

Find a Way to Coexist with Passive
Satellites Used for Weather and
Environmental Sensing?”’

Radio frequencies above 100 GHz presently have little
actual use except for passive systems used for radio
astronomy and for satellite-based sensing of weather data
and pollution monitoring. But new technology and the
growing demands for terrestrial telecom such as smart
phones has resulted in growing needs for capacity in 5G
and 6G systems. Some of this capacity is expected to be .
above 100 GHz for policy decisions in the 1980s and 90s Dr. Michael J. Marcus
set aside many blocks of spectrum for purely passive Marcus Spectrum Solutions, LLC
systems to a much greater degree than in lower .
frequencies. A major challenge is thus how can we Washington, DC
q ] 9
shoehorn both uses into the same spectrum. Fortunately
the quirky nature of radio propagation above 100 GHz
offers some possible paths as does the small wavelengths
04/05/202I?ere that permit novel antenna dgsigns.q ihgﬁﬂ%’“ﬁ'&m _ Lecture 27 4:00 pm
review p055|ble building blocks of such a solution and Via Video Conference
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Your questions —

From Gao: Have we learned Liénard-Wiechert potentials before. Where do
these formulas come from? If so, Could you offer some hints?

What follows are some of the slides from Lectures 15 & 16..
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Solution of Maxwell’s equations in the Lorentz gauge -- continued

Lienard-Wiechert potentials and fields --

Determination of the scalar and vector potentials for a moving
point particle (also see Landau and Lifshitz The Classical
Theory of Fields, Chapter 8.)

Consider the fields produced by the following source: a point
charge g moving on a trajectory R({).

Charge density: p(r,t) =g  (r—R ()
dR (1)

Current density: J(r,7) = g R, ()5’ (r =R, (¢)), where R, ()= .
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Solution of Maxwell’s equations in the Lorentz gauge -- continued

O(r.f)=— Hd%ﬂf@a(f—(f—u—rw/c))

4re, [r—r'"|

1 J(r',t)
A(r,t) = drdt'=—25(t'-(t—|r-r'l/c)).
(r:1) 47zeocz-H : lr—r'| ( = | c))

We performing the integrations over first d°r’ and then dt’
making use of the fact that for any function of t’,

& f()
dt' f(t"S(t'—(t—|r=R ("] /c))=— ' ,
I ( ‘ ) _R,)(-R, ()
clr=R, ()|
where the “‘retarded time" is defined to be

Ir- R, ()]

C
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Solution of Maxwell’s equations in the Lorentz gauge -- continued

Resulting scalar and vector potentials:

q 1
DO(r,t) = ’
(r ) 72'60 R—Q
c
q A\
A(r,t) = ’
(1) 47reoc2R_V' R
c
Notation: R = r— R () Ir— R ()]
. ’ r:t_ : : .
VERq(tr), ¢
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Solution of Maxwell’s equations in the Lorentz gauge -- continued

In order to find the electric and magnetic fields, we need to

luat
evaluate E(r.1) = -VO(r.1) - GAé:,l‘)

B(r,t) =V xA(r,t)
The trick of evaluating these derivatives is that the retarded

time t, depends on position r and on itself. We can show the
following results using the shorthand notation:

R ot, R
V.

V7 S S— —
C(R_V-Rj and ot (R— CR)

C
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Solution of Maxwell’s equations in the Lorentz gauge -- continued

2 .
—VO(r,1) =1 ! IR[1-2 —V(R—V Rj+RV2R :
4re, (R V.Rj c c c c

c
_O0A(rY) _ g 1 VR(v' v-R _V-R _VR(R_v-Rj
ot 4re, (R V- RJS ¢\ Re ¢’ c? c _'

s G G |

c

2 . -
B(r./)= q : Rxv : LA R}  Rxv/c : :RxE(r,t)
4re,c (R—V. Rj (R—V. R) cR

C C
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Note that this analysis is carried out in a single frame of
reference. Now we resume our discussion about
transforming values between two different inertial frames of
reference.
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Field strength tensor ~ F = (aaAﬂ _5ﬂAa)
0 -E -E -E, 0 -E'. -E', -E'
— E' 0 -B'. B'
Faﬁ _ Ex 0 Bz By F' = x z y
“|E, B. 0 -B E, B. 0 -B.
Y z X ' 1 '
E._ B B 0 B o8, 50
Transformation of field strength tensor
7/\) J/Vﬂv O O
Faﬂ=£ayF'7§£5ﬁ B — yvlgv 7/v O O
b b b 0 0O 1 0
0 0 0 1
O _E'x _yv(E'y—'_leB'z) _yv(E'z_ﬂvB'y)
P 0 7 (B+BE,) 1B -BE.
7V(E'y+ﬂvB'z) 7V(B'z+ﬂvE'y) 0 _B'x
yv(E'z_ﬂvB'y) _yv(B'y_ﬂvE'z) B'x 0
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Lecture 26 introduced the field strength tensor.
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Inverse transformation of field strength tensor
v, =np 00
Freb — play s p-1op Pl 7.5, 7y 0 0
Y Y Y 0 0 1 0
0 0 0 1
-E, ~v.(E,-BB.) -7,(E.+BB,)
v _ E, 0 -7.(B.-BE,) 7(B,+BE.)
7.(E,~BB.) 7.(B.~BE,) 0 -B,
v.(E.+BB,) -7.(B,+BE.) B, 0
Summary of results:
E' =E, B'.=B,
E',=y.(E,~5B.) B',=y,(B,+B.E.)
E'.=y,(E.+53B,) B'.=y,(B.~BE,)
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Review of the Lorentz transformation for the field strength tensor --



A y
y
y B|: 0
=
v
b
q
s> X
z «//Z°  Fieldsin stationary frame:

E =E'
E =y, (E " +/3’VB'Z)
E.=y,E.-4B,)

E':%(x'fﬁry'y):
r (

Example: Fields in moving frame:

q(— vt'X + b§7)

(Cvep+67)”

B =B'
By :}/V(B'y_ﬂVE'Z)
B, :yv(B'z+ﬂvE'y)
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This is the example that we have been studying from Lecture 26.
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Example:

A y

Fields in moving frame:

E':’j%(x'&'i'y'y): (q(_Vt'&J'_by)

(Cvep+p7)”

y| VY
)
v
b
q
z /7

04/05/2021

B'=0
> X x’
Fields in stationary frame:
. —vt'
Ex = E X Q(z )2 /2
(vey +67)
. q(7,b)
E, =y \E,)= -
=) (Cvep+02)"”
1 4 Vb

Bz:7v(ﬁvEy): Q(VJ/ZIB 2) 2
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Using the fields from the moving frame, we can write the expressions for the fields in the

stationary frame.
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Example:

Fields in moving frame:
g(—ve'x+by)

04/05/2021

q N A
A ’ E':—(X'X"'t‘yVY):
y |V (Cvep+p2)"
— B'=0
v
b
q H)
s X X
, Fields in stationary frame:
242 (-vr.t)
Ex = E‘x = q 7" /2
(Cvrey )
Expression in terms of E = (E' )= q(7,b)
consistent coordinates ST ((_ vy tf + bZ)” ?

, a\r.p.b
Bz:yv(ﬂvEy):(_ ( 5 )2)3/2
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Here the fields measured in the stationary frame are expressed in terms of the time t

measured in the stationary frame.
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= =B./(r,B)

=2
=1
1
ct
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This is a plot shown in Lecture 26 of £, as a function of time.
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Examination of this system from the viewpoint of the
the Liénard-Wiechert potentials —(Gaussian units)

E(r,r)—ﬁﬁl‘%ﬁlZ_j}(Rx{(R%jxc%m

-R > VR Ry
Br.y=4 XV 3(l_v_erv2 )_ ><v/c2
. [ [ .
R _ij ( R _ij
c C
B(r.() = R xE(r,?)
R
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Now we consider how we may arrive at the same result without changing reference frames
by analyzing the EM fields produced by a moving charge using the Lienard-Wiechert
analysis.



Question — Why would you want to use the Liénard-
Wiechert potentials?

1. They are extremely complicated. It is best to avoid
them at all costs?

2. The Lorentz transformations were bad enough?

3. There are some circumstances for which the
Lorentz transformations do not simplify the
analysis?
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Analysis using a single reference frame --

Variables (notation) :
Radiation from a moving charged patrticle
R (1)= R, () _
o dt,

TZ
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Here we consider a charged particle (charge q) moving along the red trajectory. The vector
r indicates the point at which we will evaluate the fields. The retarded time t, is defined
here.



Examination of this system from the viewpoint of the
the Liénard-Wiechert potentials —(Gaussian units)

Note that for our example there
VR v’ leration terms
Er,)=—2 |IR-TE 1-2 || arenoacce _

RY c c
(R - v-j For our example:
c

Rq (tr) = Vt;i r= by

=by —vt X _ [22 32
g Ry (v Robj-vis R\ i
B(r,)="—— | 1-— !
c ( v.Rj c vk R
R—— : ;
c
This should be equivalent to the result given in Jackson (11.152):
E(x, 7,0 = E(0,b,0,0) = g— X7
(6 +0p0)°)
B(x.y.2.0) = B0.b.0.0) =g — 27
(6" + (o))
psEe PHY 712 Spring 2021 -- Lecture 27 o

In our case, the trajectory of the moving particle is described as constant velocity along
the x-axis while the fields are measured at the fixed point b along the y axis.



Why take this example?

1. Complete waste of time since we already know
the answer.

2. If we get the same answer as we did using the
Lorentz transformation, we will feel more
confident in applying this approach to study
electromagnetic fields resulting from more
complicated trajectories.

Note your homework for this lecture involves deriving
for yourselves the details of the analysis.
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Some details

R
t —t=——
C

L=y7

04/05/2021

2
E(r,z):#{(l{_ﬂj I_V_ZH
v-R c c
R—
( c j For our example:
] R, (t)=vt%X r=by
— ? =hv—vt X _ 1,242 2
B(r,t):g %(1_%} R =by —vt X R_m
c (R_V.Rj c A R
V=VvX tr:t__
¢ - c

¢, must be a solution to a quadratic equation:

= -2y +y Nt -yh /P =0

with the physical solution:

. Oyt +b°
c
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For your homework for this lecture, you are asked to review the evaluations here.
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Now we can express R as:

Some details continued:
R = y(—ﬁvyt + «/(v;/t)2 +b? )

and the related quantities:
R-VR/c=—-vix+by

/ 2 2
R-v-R/c= (1) +b

Y
VR v? —VvyiX + yby
EOU):LSKR__J 1__2]:|:q 3 4 }/2 )3,/2
(R_V-Rj c c (b +(vyt) )
C
-Rxv v bz
B(r,t):g —S(I_TJ i 7 S\32
(R—V'R ¢ (5 + (1))
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When the dust clears, we do verify the E and B fields obtained using the Lorentz
transformation.

24



Radiation from a moving charged patrticle

Variables (notation) :
. dR (z.)
R, (t.)= aftr =V

TZ
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With this success, we are motivated to apply this approach to more general particle
trajectories.



Liénard-Wiechert fields (cgs Gaussian units):

B(r t) = 2
C

c? c?

In this case, the electric and magnetic fields are related according to

B(r, ) = 2~ g( 2
Notation:
. dR
Rq(t,)z#zv R(,)=r—R_(1)=R ¥
04/05/2021 ' PHY 712 Spring 2021 -- Lecture 27

~Rxv ( v? V-R)_ R x v/c
(n— =2y

(19)
] )0
2D

dt’
26

Here we review the equations from the Lienard-Wiechert analysis.

We particularly notice

that for the fields very far from the particle positions, the dominant terms are those which

involve the acceleration of the particle.
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Electric field far from source:

B(r, t) = Rx E(r, t)
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c
B(l', ): RXE(I‘,t)
R
~ R v
Let R=— =—
et 2 B . B
E(r.¢ ___{Rx|R-

27

These acceleration terms are given here. These are the terms that we will focus on. Here

we define a unit vector Rhat. Jackson calls this vector n.

In principle, this unit vector

varies in time, but at large enough distances from the source, it is an approximately

constant unit vector.
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Poynting vector:

S(r,t)zi(ExB)
t)= 9 R x (R =B )x P
E(r,?) cR(l—B-liT {R [(R B) B]}

B(r, t) =R x E(r, t)
5 2 ﬁx[(ﬁ—ﬂ)xﬂ]z
E(r,/) =—L—R —
47cR (1 —B- R)
Note: We have used the fact that
R- E(r,t)=0

C A
S =—R
(r,t) 4
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In addition to calculating the fields themselves, we will be interested in calculating the
Poynting vector due to the fields in the radiation zone.



Power radiated

__ 9 R
 4ncR? R (1—B-R)6

2

2

o)
dQ - drc (1—B-R)6

ar S.-RR? =

In the non-relativistic limit: g <<1

dP q2 A A .72 qz
—=—"—|Rx| Rx =
dQ)  4rxc [ B} 47’

12 .
|V| sin’ ®

29
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After some algebra, we arrive at the expression for the power radiated per unit solid angle.
We will examine this result more in detail next time, but for now, we will consider the

result in the non-relativistic limit when beta is nearly 0.



Radiation from a moving charged patrticle

Variables (notation) :
dR,(t,)
R, (t, )= aft, =V

TZ
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This slide attempts to show the geometry of the trajectory and fields.



Radiation power in non-relativistic case -- continued

Blue arrow indicates the
particle acceleration direction
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Here we illustrate the non-relativistic power distribution, showing that the radiation

intensity is concentrated in the directions perpendicular to the particle acceleration.

time we will see how relativistic effects change this radiation pattern.

Next
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What do you think will happen when the particle velocities
become larger with respect to the speed of light in vacuum?

1. The radiation pattern will be essentially the same.
2. The radiation pattern will be quite different.
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