PHY 712 Electrodynamics 10-10:50 AM MWF online

Discussion for Lecture 31:

Finish reading Chap. 14 and start Chap. 15 –

Radiation from scattering charged particles

- 1. Thompson and Compton scattering
- 2. Radiation from particle collisions

28	Fri: 04/09/2021	Chap. 14	Radiation from accelerating charged particles	<u>#20</u>	04/12/2021
29	Mon: 04/12/2021	Chap. 14	Synchrotron radiation	<u>#21</u>	04/14/2021
30	Wed: 04/14/2021	Chap. 14	Synchrotron radiation	<u>#22</u>	04/19/2021
31	Fri: 04/16/2021	Chap. 15	Radiation from collisions of charged particles	<u>#23</u>	04/21/2021
32	Mon: 04/19/2021	Chap. 15	Radiation from collisions of charged particles		
33	Wed: 04/21/2021	Chap. 13	Cherenkov radiation		
34	Fri: 04/23/2021		Special topic: E & M aspects of superconductivity		
35	Mon: 04/26/2021		Special topic: E & M aspects of superconductivity		
36	Wed: 04/28/2021		Review		
37	Fri: 04/30/2021		Review		
	Mon: 05/03/2021		Presentations I		
	Wed: 05/05/2021		Presentations II		

PHY 712 -- Assignment #23

April 16, 2021

Finish reading Chap. 14 and start Chap. 15 in Jackson .

1. Derive the Compton formula given on page 696 of Jackson.

Your questions –

From Nick -- Can you review how an electric field (or magnetic) can accelerate a particle. What are the fields actually doing (beyond the mathematics)? Where do the forces come into play? My undergraduate E&M is rusty.

From Gao -- How is the Compton effect added into Thompson scattering?

Also comment on typo from Lecture 25

Units - SI vs Gaussian – continued

Below is a table comparing SI and Gaussian unit systems. The fundamental units for each system are so labeled and are used to define the derived units.

Variable	SI		Gaussian		SI/Gaussian
	Unit	Relation	Unit	Relation	
length	m	fundamental	cm	Rectangu fundamental	ar Snip 100
mass	kg	fundamental	gm	fundamental	1000
time	8	fundamental	8	fundamental	1
force	N	$kg \cdot m^2/s$	dyne	$gm \cdot m^2/s$	10^{5}
current	A	fundamental	statampere	statcoulomb/s	$\frac{1}{10c}$
charge	C	$A \cdot s$	statcoulomb	$\sqrt{dyne\cdot cm^2}$	$\frac{1}{10c}$

Units - SI vs Gaussian - Corrected

Below is a table comparing SI and Gaussian unit systems. The fundamental units for each system are so labeled and are used to define the derived units.

Variable	SI		Gaussian		SI/Gaussian
	Unit	Relation	Unit	Relation	
length	m	fundamental	cm	• Rectangu fundamental	ar Snip 100
mass	kg	fundamental	gm	fundamental	1000
time	8	fundamental	8	fundamental	1
force	N	$kg\cdot m^2/s^2$	dyne	$gm \cdot cm / s^2$	10^{5}
current	A	fundamental	statampere	statcoulomb/s	$\frac{1}{10c}$
charge	С	$A \cdot s$	statcoulomb	$\sqrt{dyne\cdot cm^2}$	$\frac{1}{10c}$

Thompson scattering --

Some details of scattering of electromagnetic waves incident on a particle of charge q and mass $m_{\rm q}$

Incident electomagnetic wave:

k₀ propagation direction **ε**₀ polarization direction **E**(**r**', *t*') = $\Re(\epsilon_0 E_0 e^{i\mathbf{k}_0 \cdot \mathbf{r}' - i\omega t'})$

Scattered radiation: **r** observed position $\boldsymbol{\varepsilon}_1, \boldsymbol{\varepsilon}_2$ polarization directions Thompson scattering – non relativistic approximation

Power radiated in direction $\hat{\mathbf{r}}$ by charged particle with acceleration $\dot{\mathbf{v}}$: $\frac{dP}{d\Omega} = \frac{q^2}{4\pi c^3} \left| \hat{\mathbf{r}} \times (\hat{\mathbf{r}} \times \dot{\mathbf{v}}) \right|^2$

Suppose that the acceleration $\dot{\mathbf{v}}$ of a particle (charge q and mass m_q) is caused by an electric field: $\mathbf{E}(\mathbf{r},t) = \Re\left(\mathbf{\epsilon}_0 E_0 e^{i\mathbf{k}_0 \cdot \mathbf{r} - i\omega t}\right)$ $\dot{\mathbf{v}} = \frac{q}{2} \Re\left(\mathbf{\epsilon}_0 E_0 e^{i\mathbf{k}_0 \cdot \mathbf{r} - i\omega t}\right)$

Time averaged power:

$$\left\langle \frac{dP}{d\Omega} \right\rangle = \frac{c}{8\pi} \left(\frac{q^2}{m_q c^2} \right)^2 \left| E_0 \right|^2 \left| \hat{\mathbf{r}} \times \left(\hat{\mathbf{r}} \times \boldsymbol{\varepsilon}_0 \right) \right|^2$$

What assumptions are made to conclude that

$$\dot{\mathbf{v}} = \frac{q}{m_q} \Re \left(\mathbf{\varepsilon}_0 E_0 e^{i\mathbf{k}_0 \cdot \mathbf{r} - i\omega t} \right) \quad ?$$

Is it always true?

Comment on acceleration

Lorentz force:
$$\mathbf{F} = q(\mathbf{E} + \frac{\mathbf{v}}{c} \times \mathbf{B})$$

For $v \ll c$, the dominate force on a charged particle is from the electric field. According to Newton:

$$m_q \frac{d\mathbf{v}}{dt} \equiv m_q \dot{\mathbf{v}} = q \mathbf{E}(\mathbf{r}, t) = q \mathbf{\varepsilon}_0 E_0 e^{i\mathbf{k}\cdot\mathbf{r} - i\omega t}$$

Thompson scattering – non relativistic approximation -- continued

Time averaged power

ŕ

power:
$$\left\langle \frac{dP}{d\Omega} \right\rangle = \frac{c}{8\pi} \left(\frac{q^2}{m_q c^2} \right)^2 \left| E_0 \right|^2 \left| \hat{\mathbf{r}} \times (\hat{\mathbf{r}} \times \boldsymbol{\varepsilon}_0) \right|^2$$

= $\sin \theta \left(\cos \phi \, \hat{\mathbf{x}} + \sin \phi \, \hat{\mathbf{y}} \right) + \cos \theta \hat{\mathbf{z}}$

Polarization of incident light: $\mathbf{\varepsilon}_0 = \hat{\mathbf{x}}$ Polarization of scattered light: $\mathbf{\varepsilon}_1 = \cos\theta(\hat{\mathbf{x}}\cos\phi + \hat{\mathbf{y}}\sin\phi) - \hat{\mathbf{z}}\sin\theta$ $\mathbf{\varepsilon}_2 = -\hat{\mathbf{x}}\sin\phi + \hat{\mathbf{y}}\cos\phi$

Are these polarizations unique?

K

Note that we are associating the vector $\hat{\mathbf{r}} \times (\hat{\mathbf{r}} \times \dot{\mathbf{v}})$ with the polarization of the light. Why?

Liénard-Wiechert fields (cgs Gaussian units):

$$\mathbf{E}(\mathbf{r},t) = \frac{q}{\left(R - \frac{\mathbf{v}\cdot\mathbf{R}}{c}\right)^3} \left[\left(\mathbf{R} - \frac{\mathbf{v}R}{c}\right) \left(1 - \frac{v^2}{c^2}\right) + \left(\mathbf{R} \times \left\{ \left(\mathbf{R} - \frac{\mathbf{v}R}{c}\right) \times \frac{\dot{\mathbf{v}}}{c^2} \right\} \right) \right].$$
(19)

$$\mathbf{B}(\mathbf{r},t) = \frac{q}{c} \left[\frac{-\mathbf{R} \times \mathbf{v}}{\left(R - \frac{\mathbf{v} \cdot \mathbf{R}}{c}\right)^3} \left(1 - \frac{v^2}{c^2} + \frac{\dot{\mathbf{v}} \cdot \mathbf{R}}{c^2} \right) - \frac{\mathbf{R} \times \dot{\mathbf{v}}/c}{\left(R - \frac{\mathbf{v} \cdot \mathbf{R}}{c}\right)^2} \right].$$
 (20)

In this case, the electric and magnetic fields are related according to

$$\mathbf{B}(\mathbf{r},t) = \frac{\mathbf{R} \times \mathbf{E}(\mathbf{r},t)}{R}.$$
(21)

PHY 712 Spring 2021 -- Lecture 31

11

Thompson scattering – non relativistic approximation -- continued

Time averaged power:

$$\left\langle \frac{dP}{d\Omega} \right\rangle = \frac{c}{8\pi} \left(\frac{q^2}{m_q c^2} \right)^2 \left| E_0 \right|^2 \left| \hat{\mathbf{r}} \times (\hat{\mathbf{r}} \times \boldsymbol{\varepsilon}_0) \right|^2$$
$$\hat{\mathbf{r}} = \sin \theta \left(\cos \phi \, \hat{\mathbf{x}} + \sin \phi \, \hat{\mathbf{y}} \right) + \cos \theta \hat{\mathbf{z}}$$

Polarization of incident light: $\mathbf{\epsilon}_0 = \hat{\mathbf{x}}$ **>y** Polarization of scattered light: $\hat{\mathbf{r}} \times (\hat{\mathbf{r}} \times \mathbf{\epsilon}_0) = \hat{\mathbf{r}} (\hat{\mathbf{r}} \cdot \mathbf{\epsilon}_0) - \mathbf{\epsilon}_0$ (perpendicular to $\hat{\mathbf{r}}$) denote scattered light polarization by $\mathbf{\epsilon}^*$ $\mathbf{\epsilon}^* \cdot (\hat{\mathbf{r}} \times (\hat{\mathbf{r}} \times \mathbf{\epsilon}_0)) = -\mathbf{\epsilon}^* \cdot \mathbf{\epsilon}_0$ Thompson scattering – non relativistic approximation -- continued

Time averaged power:

$$\left\langle \frac{dP}{d\Omega} \right\rangle = \frac{c}{8\pi} \left(\frac{q^2}{m_q c^2} \right)^2 \left| E_0 \right|^2 \left| \hat{\mathbf{r}} \times (\hat{\mathbf{r}} \times \boldsymbol{\varepsilon}_0) \right|^2$$
$$\hat{\mathbf{r}} = \sin\theta \left(\cos\phi \, \hat{\mathbf{x}} + \sin\phi \, \hat{\mathbf{y}} \right) + \cos\theta \hat{\mathbf{z}}$$

Thompson scattering – non relativistic approximation -- continued Time averaged power with polarization ϵ^* :

$$\left\langle \frac{dP}{d\Omega} \right\rangle = \frac{c}{8\pi} \left(\frac{q^2}{m_q c^2} \right)^2 \left| E_0 \right|^2 \left| \mathbf{\epsilon} * \cdot \mathbf{\epsilon}_0 \right|^2$$

Scattered light may be polarized parallel to incident field or polarized with an angle θ so that the time and polarization averaged cross section is given by:

$$\left\langle \left| \boldsymbol{\varepsilon}^{*} \cdot \boldsymbol{\varepsilon}_{0} \right|^{2} \right\rangle_{\phi} = \left\langle \left| \boldsymbol{\varepsilon}_{1} \cdot \boldsymbol{\varepsilon}_{0} \right|^{2} \right\rangle_{\phi} + \left\langle \left| \boldsymbol{\varepsilon}_{2} \cdot \boldsymbol{\varepsilon}_{0} \right|^{2} \right\rangle_{\phi} = \frac{1}{2} \cos^{2} \theta + \frac{1}{2}$$

Averaged cross section:
$$\left\langle \frac{d\sigma}{d\Omega} \right\rangle = \left(\frac{q^{2}}{m_{q}c^{2}} \right)^{2} \frac{1}{2} \left(1 + \cos^{2} \theta \right)$$

This formula is appropriate in the X-ray scattering of electrons or soft γ -ray scattering of protons

Thompson scattering – relativistic and quantum modifications

Thompson scattering – relativistic and quantum modifications

Relativistic and quantum modifications to averaged cross section:

$$\left\langle \frac{d\sigma}{d\Omega} \right\rangle = \left(\frac{q^2}{m_q c^2} \right)^2 \left(\frac{p'}{p} \right)^2 \frac{1}{2} \left(1 + \cos^2 \theta \right)$$

$$\frac{p'}{p} = \frac{1}{1 + \frac{\hbar\omega}{m_q c^2} (1 - \cos\theta)}$$

Modified Thompson scattering cross section

In fact, the more accurate treatment by Klein and Nishina gives

$$\frac{p'}{p} = \frac{1}{1 + \frac{\hbar\omega}{m_q c^2} (1 - \cos\theta)}$$

Klein-Nishina formula

$$\left\langle \frac{d\sigma}{d\Omega} \right\rangle = \left(\frac{q^2}{m_q c^2} \right)^2 \left(\frac{p'}{p} \right)^2 \frac{1}{2} \left(\frac{p'}{p} + \frac{p}{p'} - \sin^2 \theta \right)$$

Note that for $\frac{\hbar\omega}{m_q c^2} \ll 1$ all results are consistent

Up to now, we have been considering (re)radiation due to a charged particle interacting with an electromagnetic field. Next time we will consider radiation due to interactions (collisions) of charged particles themselves.

Radiation produced by collisions of charged particles

Generation of X-rays in a Coolidge tube

https://www.orau.org/ptp/collection/xraytubescoolidge/coolidgeinformation.htm

http://www.ndt-ed.org/EducationResources/CommunityCollege/Radiography/Physics/xrays.htm

