PHY 712 Electrodynamics
10-10:50 AM MWF online

Discussion for Lecture 31:
Finish reading Chap. 14 and start Chap. 15 —
Radiation from scattering charged particles
1. Thompson and Compton scattering

2. Radiation from particle collisions
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32 |Mon: 04/19/2021 |Chap. 15 Radiation from collisions of charged particles
33 |Wed: 04/21/2021 |Chap. 13 Cherenkov radiation
34 |Fri: 04/23/2021 Sfpegggtn“ dpL'l‘;iEitf: M aspects of
35 [Mon: 04/26/2021 fﬁsgﬁi‘:ﬁ’ dﬂﬁi&itﬁ M aspects of
36 Wed: 04/28/2021 Review
37 |Fri: 04/30/2021 Review

Mon: 05/03/2021 Presentations |

Wed: 05/05/2021 Presentations Il

PHY 712 -- Assignment #23

Finish reading Chap. 14 and start Chap. 15 in Jackson .

1. Derive the Compton formula given on page 696 of Jackson.
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Your questions —

From Nick -- Can you review how an electric field (or magnetic) can
accelerate a particle. What are the fields actually doing (beyond the

mathematics)? Where do the forces come into play? My undergraduate E&M is
rusty.

From Gao -- How is the Compton effect added into Thompson scattering?

Also comment on typo from Lecture 25



Units - SI vs Gaussian — continued

Below is a table comparing SI and Gaussian unit systems. The fundamental units for each system are so
labeled and are used to define the derived units.

Variable SI Gaussian SI/Gaussian
Unit Relation Unit Relation
length m fundamental cm fundamental 100
mass kg fundamental gm fundamental 1000
time s fundamental s fundamental 1

force dyne 10°
1
current A/ fundamental statampere |/ statcoulomb/s 106
c
1
charge C A-s statcoulomb \/dyne - em?




Units - SI vs Gaussian - Corrected

Below is a table comparing SI and Gaussian unit systems. The fundamental units for each system are so

labeled and are used to define the derived units.

Variable SI Gaussian SI/Gaussian
Unit Relation Unit Relation
length m fundamental cm fundamental 100
mass kg fundamental gm fundamental 1000
time S fundamental s fundamental 1
force N kg-m /s i dyne gm-cm [s? 10°
1
current A fundamental statampere | statcoulomb/s 106
c
1
charge C A-s statcoulomb \/dyne - em? 106
c




Thompson scattering --

Some details of scattering of electromagnetic waves
incident on a particle of charge g and mass m,

Incident electomagnetic wave:

4 k, propagation direction

g, polarization direction

E(rit") =R(g,Ee™™ ™)
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Scattered radiation:
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Thompson scattering — non relativistic approximation

Power radiated in direction r by charged particle with acceleration v :

dP 4"~ s AP
£ Lo

Suppose that the acceleration v ot a particle (charge g and mass m, )
is caused by an electric field:  E(r,7) =R ( g, E, eiko-r—ia)t)

V= miq R (soEoeik°"'_i“’t )

5 2
Time averaged power: d—P = 1 > ‘Eo‘z
dQ 87T m,c

f‘><(f'><80)‘2



What assumptions are made to conclude that

V= ii}’{(a()E()e"l“""_"“’t) ?

q

Is it always true?
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Comment on acceleration

Lorentz force: F =q(E + Y x B)

C

For v <<¢, the dominate force on a charged particle 1s from the

electric field. According to Newton:
dv . ik-r—iow
m, = =m, Vv =qE(r,t)= qe E e



Thompson scattering — non relativistic approximation -- continued
2

f‘x(f‘xao)‘z

. dP
Time averaged power: (— )= - | 4 > ‘Eo‘z
dQ)| 8z\ mc

I =sind(cos¢g X+sing §)+cosz

Polarization of incident light: ¢, = X

|5

Polarization of scattered light:

Y S
%&f/ g =cosO(xcosg+ysing)—zsind
X “1 £, =—Xsing+ycosg

Are these polarizations unique?
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Note that we are associating the vector I X (f' X V)
with the polarization of the light. Why?

Liénard-Wiechert fields (cgs Gaussian units):

o= g (-8 () e ((n) )]

(19)
—R Xv v?  v-R R xv/e
B(r,t) = 2 (- ) - /2 | (20)
¢ L(R-*F) “ (R—*3%)
In this case, the electric and magnetic fields are related according to
R x E(r,t
B(r,t) = R(r’ ). 21
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Thompson scattering — non relativistic approximation -- continued
2
dP . C q2 ‘E ‘2
dQ/ 8« chz ’

I =sind(cos¢g X +sing §)+cosHz

f‘x(f‘xao)‘z

Time averaged power: <

Polarization of incident light: ¢, = X

|5

>y Polarization of scattered light:

rx(fxg,)=r(f-g)—¢, (perpendicular to F

S
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denote scattered light polarization by &

g - (Fx(Fxg))=—¢ g



Thompson scattering — non relativistic approximation -- continued
2
dP . C q2 ‘E ‘2
dQ/ 8« chz ’

I =sind(cos¢g X +sing §)+cosHz

f‘x(f‘xao)‘z

Time averaged power: <

" Incident light: ¢, =X

Polarization of scattered light: €

Linear combination of

|5

>y£1 = COS «9()2 Cos @ + )Ar sin @) — Zsin @

\{
-5
(’%
U4
U4
U4
U4
U4
S e ———

g, = —§sin¢+§cos¢

T ) (el )t oses i)




Thompson scattering — non relativistic approximation -- continued
Time averaged power with polarization &*:

2
dP c| g’
<d_Q> = . Lm 62] ‘Eo‘z ‘g*.go‘z
q

Scattered light may be polarized parallel to incident field
or polarized with an angle 0 so that the time and
polarization averaged cross section is given by:

1 1
<‘8*.80‘2>¢ :<‘£1 .80‘2>¢ +<‘82 .80‘2>¢ :Eczosz (943

2
. 1
Averaged cross section: da -| 4 > —(1 +cos’ «9)
dQ) m.c” | 2

This formula is appropriate in the X-ray scattering of
electrons or soft y-ray scattering of protons




Thompson scattering — relativistic and quantum modifications

iIncident photon

Conservation of momentum and energy:
p=p'cosf+p,_ cosa pc=hw

0= p'sinf—p_ sina p'c=hw'

ha)+ch2 =ho'+ \/p'q,2 ¢’ +(chz)2
p I
P hao (1-cos6)

2
qu




Thompson scattering — relativistic and quantum modifications

iIncident photon

Relativistic and quantum modifications to averaged cross section:

2 2 ' 2
do -| 4 > LA l(1+cos2 (9)
dQ m,c p) 2
P _ I

P14 ha)z (1-cos®)

qu




Modified Thompson scattering cross section
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In fact, the more accurate treatment by Klein and Nishina
gives

p' 1
P14 ni:ac)z (1-cos®)

Klein-Nishina formula

2 2 ' 2 '
d_0>: 9 - p|1fr + 2 _gin?0
dQ m,c p)2Up p

ha

2

qu

Note that for << 1 all results are consistent




Up to now, we have been considering (re)radiation due to a
charged particle interacting with an electromagnetic field.
Next time we will consider radiation due to interactions
(collisions) of charged particles themselves.



Radiation produced by collisions of charged particles

Generation of X-rays in a Coolidge tube
https://www.orau.org/ptp/collection/xraytubescoolidge/coolidgeinformation.htm
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https://www.orau.org/ptp/collection/xraytubescoolidge/coolidgeinformation.htm

http://www.ndt-ed.org/EducationResources/CommunityCollege/Radiography/Physics/xrays.htm
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http://www.ndt-ed.org/EducationResources/CommunityCollege/Radiography/Physics/xrays.htm
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