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PHY 712 Electrodynamics
10-10:50 AM  MWF  Online

Discussion for Lecture 34:

Special Topics in Electrodynamics:

Electromagnetic aspects of 
superconductivity

04/23/2021 PHY 712  Spring 2021 -- Lecture 34
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Important dates:  Final exams available May 6; due May 14
Outstanding work due May 14
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Advice about presentations
Each presentation should be roughly ~ 10 minutes using 
power point or the equivalent

It should contain the following
1. Introduction and motivation
2. Some detailed derivation and/or numerical work
3. Conclusions and summary of what you learned
4. Bibliography including any possible online sources.  

Materials to turn in
1. Presentation slides (or pdf version)
2. If you have chosen to review a literature paper, please 

include its pdf file if possible.  
3. Maple, Mathematica, or other software files that were 

used in the project
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What will you do after May 14?
Relax a minute or two

Several of you will want to start preparing for the 
Qualifier Exams which will be administered  
(tentative dates):   
Monday, June 21 to Thursday, June 24 during 
the hours 9:00 am - 12 pm.
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Your questions –
From Tim -- How come on slide 11 the magnetic field is only changing in the z 
direction? Is that just how they prepared the magnetic field in the superconducting 
material?

From Gao -- You gave some comparison between type 1 and 2 
superconductors in lecture notes. Could you introduce the mechanism leads to 
these two types of superconductors.
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Special topic:   Electromagnetic properties of superconductors

Ref:D. Teplitz, editor, Electromagnetism – paths to research,
Plenum Press (1982); Chapter 1 written by Brian Schwartz 

and Sonia Frota-Pessoa
History:

1908  H. Kamerlingh Onnes successfully liquified He
1911   H. Kamerlingh Onnes discovered that Hg at 4.2 K 
has vanishing resistance
1957 Theory of superconductivity by Bardeen, Cooper, 
and Schrieffer

The surprising observation was that 
electrical resistivity abruptly dropped 
when the temperature of the material 
was lowered below a critical 
temperature Tc.
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https://phy.duke.edu/about/history/historical-faculty/fritz-london

Fritz London 1900-1954

https://phy.duke.edu/about/history/historical-faculty/fritz-london


04/23/2021 PHY 712  Spring 2021 -- Lecture 34 8

Some phenomenological theories < 1957  thanks to F. London
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London model of conductivity in superconducting materials;   
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Properties of a normal metal
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Does this model allow for any temperature 
dependence on the resistivity?

1. No.
2. Yes.
3. Maybe.
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2

London model of conductivity in superconducting materials;   

               

From Maxwell's equations:
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How is the London model different from the Drude
model?

1. Subtle difference.
2. Big difference.
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Some phenomenological theories < 1957
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London model of conductivity in superconducting materials
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Are these equations 
1. Exact?
2. Approximate?
3. Wrong?
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London model – continued
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London model – continued
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Behavior of superconducting material – exclusion of 
magnetic field according to the London model
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Behavior of magnetic field lines near superconductor

normal
state:

superconducting 
state:
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Need to consider phase equilibria between “normal” and 
superconducting state as a function of temperature and 
applied magnetic fields.
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Magnetization field
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Magnetization field (for “type I” superconductor)
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Temperature dependence of critical field
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Type I elemental superconductors
http://wuphys.wustl.edu/~jss/NewPeriodicTable.pdf

http://wuphys.wustl.edu/%7Ejss/NewPeriodicTable.pdf
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Type I superconductors:
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The following slides give a quick look of some of the 
intriguing aspects of superconducting materials and 
their properties --
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Type II superconductors
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Quantization of current flux associated with the superconducting 
state  (Ref:   Ashcroft and Mermin, Solid State Physics)
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Quantization of current flux associated with the superconducting 
state  -- continued
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Suppose a superconducting material has a 
cylindrical void.  Evaluate the integral of the current 
in a closed path within the superconductor 
containing the void. 
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Such “vortex” fields can exist within type II superconductors.
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Crystal structure of one of the high temperature 
superconductors

YBa2Cu3O7

From MS thesis of Brent 
Howe (Minn State U, 2014)
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Some details of  single vortex in type II superconductor
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Based on physics 
of the Josephson 
junction.
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What we have not yet discussed is the microscopic 
mechanism for the phenomenon.    --- to be continued on 
Monday 4/26/2021      (starting later due to QM exam)
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