PHY 712 Electrodynamics
10-10:50 AM MWF Online

Discussion for Lecture 35:
Special Topics in Electrodynamics:

Some optical properties of materials**

**previously advertised as more details on superconductors
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Timelines —
May 6 — take home exam available
May 14 — all course materials due; outstanding
homework, projects, and completed exams



Aspects of optical properties of solids

1. Quantum effects cause discrete energy levels for
electrons; EM radiation can couple the ground state
of a material to its excited states

2. In solid materials with ~1023 atoms, discrete states
become bands of states
a. Metals
b. Insulators

3. Anisotropic effects

Note: We can analyze effectively single particle systems
with high accuracy. Analysis of several/many particle
systems can be accomplished with a series of
approximations. We will also use a linear combination
of atomic orbital approach to get the qualitative picture.



Electronic structure of an atom

For simplicity we will first consider a single electron
system; a H-like ion with atomic charge of +Ze and
one electron of charge —e:

According to Quantum Mechanics:
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The following few slides address the question of the
expected distribution of energy levels of materials.

Note that isolated atoms and molecules have discrete
and continuum states while solids have only continuum
states.

How is the distribution of states of materials related to
their spectra?
1. Optical properties of materials are determined by
transitions between states.
2. Transitions between discrete states - discrete
spectral features.
3. Transitions between continuum states - broad
spectral features.



Probability amplitude for electron in the ground state of
H atom:
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Now consider one electron in the presence of two H-like ions:
Electronic structure of H-like molecular ion
(within Born-Oppenheimer approximation)
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Electronic structure of H-like molecular ion — continued
Ref. Pauling and Wilson, Introduction to Quantum
Mechanics (1935) (now published by Dover)

Necessary integrals:
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variational approximation:
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Electronic structure of H-like molecular ion — continued
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In the previous slide, we showed two states for the H,*
molecular ion. Are these the only states?

1. Yes

2. No



Formation of “energy bands” with a large number of atoms --

Extension of approximate “linear combination of atomic
orbital” idea to larger systems

Idealized model Hamiltonian with only nearest neighbor interactions:
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In practice, the “energy band” structure of materials is
affected by competing effects of structure and composition

Example: Diamond lattice (2 C atoms per primitive unit cell)




Ref. PRB 2, 2054 (1970)

Note: Valence bands
must accommodate 8
valence electrons
from two C 1s22s22p?
atoms per unit cell
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Visible light for humans
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How do you expect a diamond crystal to look when
illuminated by visible light?

1. It will be opaque.

2. It will be completely transparent

3. It will be partially transparent.



Absorption spectrum of diamond
(b) Energy (eV)
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Optical Engineering of Diamond, First Edition. Edited by Richard P. Mildren and James R. Rabeau.
© 2013 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2013 by Wiley-VCH Verlag GmbH & Co. KGaA.
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Images of natural diamonds

How is it possible for
these diamonds to
have absorption in the
visible spectrum?
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Another example --
Example: Graphite (4 C atoms per unit cell)
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Note: Valence bands must

Ref. PRB 26, 5382 accommodate 16 valence electrons
(1982) from four C 1s22s22p2 atoms per unit
cell
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Band diagram for graphite

04/26/2021 PHY 712 Spring 2021 -- Lecture 35 21




How different is the band structure of diamond and
graphite?

1. They look slightly different, but it is hard to
tell because they were analyzed using
different approximations.

2. They look drastically different because ....



Image of natural graphite

(semi metal)

04/26/2021 PHY 712 Spring 2021 -- Lecture 35

23



Another example --

Example: Calcite CaCO;,

-
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F.M. Hossain et al. / Solid State Communications 149 (2009) 1201-1203
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Fig. 3. The frequency dependent optical properties evaluated for the two directions
(dashed and solid lines are along [001] and [100] directions respectively) of
incoming light w.r.t. the crystal axis.
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How are the results on the previous slide related to
each other?

1. They are all independent of eachother

2. Some of them are related because ...

What determines the birefringence that we observe?



Reflectance and transmittance in an anisotropic crystal --
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Consider the problem of determining the reflectance from
an anisotropic medium with isotropic permeability p,and
anisotropic permittivity ¢,k where:

(k. 0 0
k=| 0 K, 0
\ 0 0 Kzz/

By assumption, the wave vector in the medium is
confined to the x-y plane and will be denoted by

@, . . .
k, =—(n Xx+n)y),where n_and n are to be determined.
C Y X Y

The electric field inside the medium is given by:
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Inside the anisotropic medium, Maxwell's equations are:
V-H=0 V-k-E=0
VXE—-iou,H=0 VxH+iwek-E=0

After some algebra, the equation for E is:
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From E, H can be determined from
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The fields for the incident and reflected waves are the
same as for the isotropic case.

a) o « A « A
K, = —(sinix +cosiy),
C

@, . . "
K, =—(sinix—-cosiy).
C

Note that, consistent with Snell’s law: #, =SIni

Continuity conditions at the y=0 plane must be applied for
the following fields:

H(x,0,z,t), E (x,0,2,1), £ (x,0,2,¢), and D, (x,0,z,7).

There will be two different solutions, depending of the
polarization of the incident field.



Solution for s-polarization
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Some details for s-polarization
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Continuity conditions:
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Conventionally this s-polarization wave 1s called the "ordinary" wave
since 1t satisfies Snell's law:
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Solution for p-polarization
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Some details for p-polarization
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Conventionally this is called the extraordinary wave since it
does not necessarily satisfy Snell’s law.
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