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28 |Fri: 04/09/2021 Chap. 14 Radiation from accelerating charged particles [#20 04/12/2021
29 Mon: 04/12/2021 Chap. 14 Synchrotron radiation #21 104/14/2021
30 Wed: 04/14/2021 |Chap. 14 Synchrotron radiation #22 104/19/2021
31 |Fri: 04/16/2021 | Chap. 15 Radiation from collisions of charged particles [#23 04/21/2021
32 \Mon: 04/19/2021 |Chap. 15 Radiation from collisions of charged particles
33 \Wed: 04/21/2021 |Chap. 13 Cherenkov radiation
34 Fri: 042312021 fﬁ;;;'}f d‘ﬂ‘;tlﬁtﬁ M aspects of
35 |Mon: 04/26/2021 ?&iﬁipﬁnﬁ:ﬂ? of some optical
36 |Wed: 04/28/2021 Review
37 |Fri: 04/30/2021 Review

Mon: 05/03/2021 Presentations |

Wed: 05/05/2021 Presentations |l
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Review | Summary of concepts/equations

Review || Example problems

Timelines —
April 30 — sign up for presentations
May 3 — Presentations |
May 5 — Presentations Il
May 6 — take home exam available
May 14 — all course materials due; outstanding
homework, projects, and completed exams



Colloquium this week is joint with Chemistry on Wed. at 4 PM

Chemistry Department Seminar

Joint Seminar with Physics
Wednesday, April 28, 2021 at 4 P.M.

Dr. Miles Silman

Professor of Biology

Andrew Sabin Family Foundation Professor of
Conservation Biology

Director, Center for Energy, Environment, and
Sustainability

Wake Forest University

The electromagnetic spectrum and
carbon nanomaterials in Andean
and Amazonian conservation

Dr. Silman received a B.S. in Biology from the University of Missouri
and his Ph.D. in Zoology from Duke University.
His primary interests are community composition and dynamics of
Andean and Amazonian tree communities in both space and time. The
lab’s current research focuses on combining modern- and

aleoecology to understand tree distributions and plant-climate :
relatlnnshigsyin the Andes and Amazon. : Depanmem of BID|Dgy’
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Units - SI vs Gaussian — continued

Below is a table comparing SI and Gaussian unit systems. The fundamental units for each system are so

labeled and are used to define the derived units.

Variable SI Gaussian SI/Gaussian
Unit Relation Unit Relation
length m fundamental cm fundamental 100
mass kg fundamental gm fundamental 1000
time s fundamental s fundamental 1
force N kg -m-/s?2 dyne gm - cm~[& 10°
1
current A fundamental statampere | statcoulomb/s 106
c
1
charge C A-s statcoulomb \/dyne - em? 10c
c




Some unit relationships

Elementary charge e
in Sl units: 1.602176634x10-1° C
in cgs Gaussian units:  4.80320424x1010  stat-C

Comment on eV as an energy unit

Joule is the Sl energy unit
Volt is the Sl electrostatic potential unit

1eV=1.602176634x10"1° J



More relationships

CGS (Gaussian) MKS (SI)
D=E+47P =¢cE D=¢E+P=¢cE
H:B—47zM:lB H:LB—M:lB
H Hy H
E--vo-1% E--vo-2
c Ot ot
B=VxA B=VxA
€ < €/ €

H g M,
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More relationships

CGS (Gaussian)

MKS (SI)
S=—ExH S=ExH
4r
1
M:L(E'D-FB'H) u=—(E-D+B-H)
87 2
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Memorable equations from electrostatics _
Poisson and Laplace Equations

We are concerned with finding solutions to the Poisson
equation: (r)
2 P
VD,(r)=-
&y

and the Laplace equation:

VO, (r)=0

The Laplace equation is the “homogeneous” version of the
Poisson equation. The Green's theorem allows us to
determine the electrostatic potential from volume and surface

integrals: 1
D(r) = de3r' o(r"G(r,r') +

47e,

4L 4 [G(r, V' d(r) - dr)WV'G(r,r)]-#".
T S



Memorable equations from electrostaticsb

j &' p(rG(r,r'") +

b= d7e,

L[ 1[G o) - D)V Gr,r)] F.

4 *sS
‘ Boundary value effects

For a confined 1solated system, the boundary terms vanish:
J- d’r' p(r\G(r,r")

1
r-r]

b(r) = 4re,

and G(r,r'") =
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Useful identity:

: ‘Z i rz-lu v, (0.0), (0.0)

‘r—r 2l +1 7

Example for 1solated charge densﬂ:y p(r) with

electrostatic potential Vanishing forr —» o

\r r\

dr 1! "
a*r pf <y (B.0), (0,
j r plr )(%2l+1r>m W (007, ( ,40))

47150



A similar technique can be used to analyze solutions to the
full time dependent Maxwell's equations for perfectly

harmonic sources -- . 1 6D
Lorentz gauge form --require: V-A, +— (’%L =0
c
1 0°D This choice decouples the
— 2 L —_
Ve, + 2 ot pley equations for the scalar and
1 52A vector potentials.
2
-V A, + - 8t2L = 1,d
General equation form:
1 o’
2 _ — -
(V _aT]T AT p(r.0)/ (475,)
A (r,t o (x,t)/ (4r)
w(ey=1 0D ren =1
A, (r,t) Hot ,(x,1) [ (47)
A (r,1) |/ (x,t) ] (47r)




Solution of Maxwell’'s equations in the Lorentz gauge -- continued

G(r,t;r',t'): ‘ : ' /c))
r—r

St —r—v

Solution for field ¥(r, 7):
LP(r,t): Y ., (r,t)+

j 43 j dt ; _1 " 5(r'—(r —%‘r _r

Df(r',r')




Electromagnetic waves from time harmonic sources
Charge density: p(r,t) =R (,5(1', ) e‘l”t)

Current density: J(r,z)= SR(j(r, o) e—ia)t)

Note that the continuity condition applies:

EENIS
Generalsource: £ (r,¢)=R(7(r,0)e )
For f(ro)= 4;(90 plr, o)
or 7 (r.0)=22J (r.0)

4r



Electromagnetic waves from time harmonic sources —
continued:

P(r,t)="VY,_,(r,1)+

jaﬂr'jdt' ‘rir' 5(1’—(t—é‘r—r'

Df(r',r')

CP(I‘, a))e—ia)t _ {Pf:() (l‘, a))e—ia)t n
J'Clﬁl”'j dt’' 1 é(t'_(t_l‘r_r'jjf(r',a))eia)ﬂ
‘r —r C
y | S| |
=¥, (r,w)e"™ + Id3r' flr', ™

‘r—r'



Electromagnetic waves from time harmonic sources —

continued: For scalar potential (Lorentz gauge, k = 2)

C

ik|r—r'|

O (r,)=d,(r,0)+ 1 Id?’r'e

dre, r—r plrio)

'

2
where (Vz + %)@O (r,0)=0

For vector potential (Lorentz gauge, k = Q)
C

ik|r—r'| N

A(r,m)=A, (r,a))+f—;’z_‘-d3r"i — J(r'\m),

2
where [Vz - C;)—zj A,(r,®)=0



Electromagnetic waves from time harmonic sources —
continued:

Useful expansion :

ik|r—r'|

— =ik j (ke oy (ke )Y, (B)Y " ()

Im

Spherical Bessel function : j, (k)
Spherical Hankel function : &, (k) = j,(kr)+ in, (kr)

&)(r, a)) = &)O(r, a))+ Z%m (r, a))Y,m (f')

¢lm(r W Id3r'pr a))]l(kr )h (kr) (')



Electromagnetic waves from time harmonic sources —
continued:

Useful expansion :

= ik jy (k. Yo, (ke )1, (B)Y " ()

Im

ik|r—r'|

4ﬂh—r'
Spherical Bessel function : j, (k)
Spherical Hankel function : &, (k) = j,(kr)+ in, (kr)

m~~/

A(l’,a))z Ko (raa))"' Zalm (r,a) Im (f)
Im

a, (r,0)=iku, j d*r'I(e', o), (ke Y, (ke )Y i (£)



Note that this pure time harmonic treatment is different from
the case of the Lienard-Wiechert potentials

Lienard-Wiechert potentials and fields --

Determination of the scalar and vector potentials for a moving
point particle (also see Landau and Lifshitz The Classical
Theory of Fields, Chapter 8.)

Consider the fields produced by the following source: a point
charge g moving on a trajectory R (f).

Charge density: p(r,1)=¢6" (r—R (1))
dR (?)

Current density: J(r,?) =g Rq (S (r-R (1), where Rq (1) = ”

R (1)
0 )




Solution of Maxwell’'s equations in the Lorentz gauge -- continued

Resulting scalar and vector potentials:

q |
D(r,t) = ’
(r ) 472'60 R_V. R
C
q Vv
A(r,t) = ’
(r,?) 47ZEOCZR_V'R
C
Notation: R =  — R (2.) r— R (2,)]




Some aspects of the special theo i B
[ Srentz transformations Y Qloidl8HAY notation

.
p="
C
y = 1
EEREY &
Y A y’ Stationary frame Moving frame
0 ct = 7/(ct'+,[)’x')
= y(x'+,6’ct')
______ YV x ° y =
XJ : ’ z — Z'
v
X’
Y R
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Stationary frame Moving frame

ct = yct'+px)
= yla'+per)
— y'

z = Z'

For example, suppose an event occurs in the moving frame
at time ¢' and at the positionx'=0=y'=z"'

This event 1s measured in the stationary frame at time

t =yt where y=—

and at the position
x = yPct’



More 4-vectors: a =10,1,2,3}

Time and position : = X

Charge and current : = J“

(94

Vector and scalar potentials : —|




( h
Lorentz transformations 7oovh 000
B — )/Vﬂv 7/\) O O
’ 0 0O 1 0
. 0 0 0 1)
Time and space: X =Lx“=L7x”
Charge and current : J =L J =LLJF
Vector and scalar potential : A% = £ 4" = £7 4"
Notation: LB = i p BB Repeated index
=i summation
convention
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4-vector relationships

(et (A%

X Al 0 . a

& r & (A ,A): upper index 4 - vector A“ for (a = 0,1,2,3)
Y

\z) 4

Keeping track of signs - - lower index 4 - vector 4, = (AO ,—A)

Derivative operators (defined with different sign convention):

ok :(i,_Vj aa :(i,Vj
cOt cOt



For stationary frame
_Ex

F% =

(0
E

X

E

y

E

\ "z

0
B

z

- B

y

For moving frame

F'% =

0
EV
E!

X

y

E'.

—F'

X

0
BV

z

—B'

~E,
- B.
0

B

X

F? =(64" —8" 4%)




=» This analysis shows that the E and B fields must be
treated as components of the field strength tensor and that in
order to transform between inertial frames, we need to use the
tensor transformation relationships:

Transformation of field strength tensor

FP =L L7

7
- 7P,
0
0
0 —~E'

E' 0 x
7B\ +B,8.) (B +BE)
]/V(E'Z—ﬂVB'y) _7/\/( 'y_ﬂvE'z)

y.p, 0 0
o 00
0 1 O
0 0 1
~y(E",+8,B.) -7(E.-B.B)




Inverse transformation of field strength tensor

v, —rp, 00
FreB — p-lay s p 168 £l =75, Yy 0 0
v v v 0 0 1 0
0 0 0 1
0 -E, -7,(E,-B,B.) -7,(E.+BB,)
| E 0 n(B-BE) £(8+RE)
v,(E,~BB.) 7,(B.-BE,) 0 -B,
v,(E.+B.B,) -7.(B,+BE.) B, 0
Summary of results:
E'x — X B'x — Bx
E' =y,(E, -BB.) B',=7,(B,+BE.)
E'. =y,(E. +pB,) B'.=y,(B.-BE,)
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