2/01/2021

PHY 712 Electrodynamics
10-10:50 AM MWF Online

Class notes for Lecture 3:

Reading: Chapter 1 in JDJ

1.

Review of electrostatics with one-
dimensional examples

Poisson and Laplace Equations

Green’s Theorem and its use in
electrostatics
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Your questions —

From Nick -- When we choose f and g to be Phi and G, where does that

intuition come from in plugging into divergence theorem? On slide 16, how do we
know which one of x and x' is the x_< term?

From Tim -- On page 10, for both the top and bottom electric potentials, you

solved the Laplace Equation, correct? Because there is no charge density when
X>a or x<-a.

From Gao -- We use the Green theorem to get the potential. In this formula,

is phi (r prime) a known condition? If not, how can we use this theorem to get the
potential as we have to know potential first to calculate the integral?



One-on-one meetings

Tues 9 PM - Gao

Office hours

Tues 9 AM 7?7?77



PHY 712 Electrodynamics

IMWF 10-10:50 PM |Online

http://www.wfu.edu/~natalie/s21phy712/ ‘

Instructor: Natalie Holzwarth |Office:300 OPL

e-mail:natalie@wfu.edu ‘

Course schedule for Spring 2021

(Preliminary schedule -- subject to frequent adjustment.)

Lecture date JDJ Reading Topic HW Due date

1 |Wed: 01/27/2021 |Chap. 1 & Appen. Introduction, units and Poisson equation #1 01/29/2021
2 |Fri: 01/29/2021 Chap. 1 Electrostatic energy calculations #2 02/01/2021
3 |Mon: 02/01/2021 |Chap.1 & 2 Electrostatic potentials and fields #3 02/03/2021
4 Wed: 02/03/2021 |Chap. 1-3 Poisson's equation in 2 and 3 dimensions
9 |Fri: 02/05/2021 Chap.1-3 Brief introduction to numerical methods
6 |Mon: 02/08/2021 |Chap.2 & 3 Image charge constructions
[= Thar + AmAramAa~~s [~ ~ o [ e 0 - ' ' f . '
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Februrary 1, 2021

PHY 712 — Problem Set #3

Continue reading Chaper 1 & 2 in Jackson

1. Consider a one-dimensional charge distribution of the form:

0 for =< —a/2
p(r) =4 por/a for —a/2<x<a/2
0 for x>a/2,

where py and a are constants.

(a) Solve the Poisson equation for the electrostatic potential ®(x) with the
boundary conditions ®(—a/2) = 0 and 22(—a/2) = 0.

(b) Find the corresponding electrostatic field E(x).
(¢) Plot ®(x) and E(x).

(d) Discuss your results in terms of elementary application of Gauss’s Law
arguments.
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Poisson and Laplace Equations
We are concerned with finding solutions to the Poisson
equation: p(r)
2
VD,(r)=-
&y

and the Laplace equation:
2
VO, (r)=0
The Laplace equation is the *homogeneous” version of the
Poisson equation. The Green's theorem allows us to
determine the electrostatic potential from volume and surface

integrals: !
D(r) = d’r' p(r"\G(r,r") +
(r) WOJV p(r)G(r,r')

4L 4 [G(r, V'S () — dr)WV'G(r,r)]-#".
T S




Poisson equation -- continued

Note that we have previously shown
that the differential and integral forms

of Coulomb's law 1s given by:

Vzd)(r):—p;r) and CD(r):4;g j d’r ,p(r)

Generalization of analysis for non-trivial boundary conditions:

j d’r' p(r"G(r,r") +

D(r) =
(r) dre, 7

[ (G o) - OV G )]
T



General comments on Green’s theorem

1 ! ! !
d’r p(r)G(r,r )+
r | &r p(r)Gr,r)
LI ER G(r,r Vo) -0 )VG(r,r)|-F.
A7 7S

D(r) =

This general form can be used in 1, 2, or 3 dimensions. In
general, the Green's function must be constructed to satisfy
the appropriate (Dirichlet or Neumann) boundary conditions.
Alternatively or in addition, boundary conditions can be
adjusted using the fact that for any solution to the Poisson
equation, @ ,(r) other solutions may be generated by use
of solutions of the Laplace equation

O(r)=d,(r)+ CD, (r),for any constant C.



Question -- We use the Green theorem to get the potential.
In this formula, is phi (r prime) a known condition? If not,
how can we use this theorem to get the potential as we
have to know potential first to calculate the integral?

Comment — You are correct; it is assumed that we know
the potential or its derivative on the boundary. As
mentioned previously, in general we cannot know both or
In other ways over specify the problem.



“Derivation” of Green’s Theorem
p(r)
gO

Green's relation: V'°G(r,r") = 470> (r —r)).

Poisson equation: V’®(r) =—

Divergence theorm: jd3r V-A= C_’Sdzr A-r
V S

Let A= f(r)Vg(r)-g(r)Vf(r)
[ (7 (e)5e(e)-(6) 97 0) i (1(0) (o) ()57 ()

gl

S

l &r (f(r)Ve(r)-g(r)V'/(r))
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Your question -- When we choose f and g to be Phi and
G, where does that intuition come from in plugging into
divergence theorem?

Comment — | assume this was the genius of Green
(perhaps with the help of Jackson).

Another comment — ldeally the Green'’s function will be
designed to take into account the boundary conditions
for your given problem. In some cases, further
adjustments may be needed.



“Derivation” of Green’s Theorem
p(r)
gO

Green's relation: V'°G(r,r") = 470> (r —r)).

Poisson equation: V’®(r)=—

laﬂr (f(r)Vzg(r)—g(r)sz(r)) :Cﬁdzr (f(r)Vg(r)—g(r)Vf(r))-f'

f(r)<«> o(r) g(r)=G(r,r')

1
d’r' p(r"\G(r,r'") +
WOJV p(r)G(r,r')

D(r) =

4L dzr'[G(r,r')V'CD(r " —DO(r ')V'G(r,r')] -r'.
T S



Example of charge density and potential varying in one dimension

Consider the following one dimensional charge distribution:

r

0 forx < —a

(z) = < —po for—a<x <0
plx) =
+po for0<z<a

0 forx > a

\

We want to find the electrostatic potential such that

d°®(z) _ plx)

dx? £0 ’

O
with the boundary condition ®(—oc0) = 0 and a;,—(—oo) =0
x
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Electrostatic field solution

The solution to the Poisson equation is given by:

r

0 forx < —a
Lo . _
() = d-(z +a) 2 for —a < x <0
—(z—a)* + 2% for0<z<a
Eogq forz > a
“ =0

The electrostatic field is given by:

4

0 forr < —a

—B(r4+a) for—a<xz<0
E(I)=< E{}( )

P(r—a) for0<z<a

0 forx > a
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" Poisson

Laplace

14



Electric charge density

Electric potential

I

Electric field
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Comment about the example and solution

This particular example is one that is used to model
semiconductor junctions where the charge density is
controlled by introducing charged impurities near
the junction.

The solution of the Poisson equation for this case can
be determined by piecewise solution within each of the
four regions. Alternatively, from Green's theorem in
one-dimension, one can use the Green's function

D(x) = : j_oo G(x,x")p(x")dx' where G(x,x")=4rx_
d7e, *

x_ should be take as the smaller of x and x".



Notes on the one-dimensional Green’s function

The Green's function for the one-dimensional

Poisson equation can be defined as a solution to

the equation: V>G(x,x") =416 (x —x"

Here the factor of 4 is not really necessary, but

ensures consistency with your text's treatment of

the 3-dimensional case. The meaning of this expression
1s that x' 1s held fixed while taking the derivative with

respect to x.



Construction of a Green’s function in one dimension

Consider two independent solutions to the homogeneous equation
V24,(x) = 0
wherei=1or 2. Let
. 4r
G(x9 X ) — W¢1 (x< )¢2 (x>)'

This notation means that x_ should be taken as the

smaller of x and x' and x_ should be taken as the larger.

W 1s defined as the "Wronskian':

W — d¢1 (.X) ¢2 (.X) ¢1 (.X) d¢2 ()C)




Summary

V:G(x,x") =—475(x—x")

G(x,x') = 4—”¢1 () (x.)
W_d%u)

@uo¢umd%“)

dG(x,x ) _dG(x,x")
ax |._... dx




One dimensional Green'’s function in practice

: J: G(x,x")po(x")dx'

47e,

1

- { |" Glx.x)p(x)dx'+ j“’ G(x,x") p(x")dx }

D(x) =

For the one-dimensional Poisson equation, we can construct
the Green's function by choosing ¢ (x)=x and ¢,(x)=1W =1:
D(x) = i{ |" xp(xdx'+ x| p(x')dx'}.
gy (0 X
G(x,x")=4rx_
This expression gives the same result as previously

obtained for the example p(x) and more generally is
appropriate for any neutral charge distribution.



Question -- On slide 16, how do we know which
one of x and X' is the x_< term?

G(x,x")=4rx_

D(x) = L{r x'p(x")dx'+ xrop(x')dx'}.
gy I X
X'<x X'>x



Orthogonal function expansions and Green’s functions

Suppose we have a “complete” set of orthogonal functions {u,(z)} defined in the

interval r; < x < x5 such that

L (@)t (2) d = O

1
We can show that the completeness of this functions implies that

>

Z Uy (2) Uy (2) = 6(x — 2).

n=1

This relation allows us to use these functions to represent a Green’s function for our

system. For the 1-dimensional Poisson equation, the Green’s function satisfies

82 ! !
ﬁG(m.}m ) = —4nd(x — x').
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Orthogonal function expansions —continued

Therefore, if

where {u,(z)} also satisfy the appropriate boundary conditions, then we can write |

Green’s functions as

T

G(z,z') =4n Z un(xlﬂ”(f).
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Example

For example, consider the example discussed earlier in the interval —a < x < a with

r

0 forr < —a

—pg for—a<xr <0

p(z) = < (24)
+py for0<z<a

0 forx > a

.

We want to solve the Poisson equation with boundary condition d®(—a)/dz = 0 and

d®(a)/dxz = 0. For this purpose, we may choose

() = \E sin ([2” ;1]m) | (25)

The Green’s function for this case as:

o o 2n+1]wz \ . 2n+1]mz’
Gloa') — %,T; sm( ga(i)(z 2a ) 26)

2a
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Example — continued

q Constant shift to
0 ~ SiIl [2n+1)mx frm 1 allow ®(0) =0.
T3

162 2.-1

B(z) = poa

€0 ([211, -+ l]ﬂ')
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