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PHY 712 Electrodynamics
10-10:50 AM  MWF  Online

Class notes for Lecture 3:
Reading: Chapter 1 in JDJ

1. Review of electrostatics with one-
dimensional examples

2. Poisson and Laplace Equations

3. Green’s Theorem and its use in 
electrostatics
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Your questions –
From Nick -- When we choose f and g to be Phi and G, where does that 
intuition come from in plugging into divergence theorem? On slide 16, how do we 
know which one of x and x' is the x_< term?

From Tim -- On page 10, for both the top and bottom electric potentials, you 
solved the Laplace Equation, correct? Because there is no charge density when 
x>a or x<-a.

From Gao -- We use the Green theorem to get the potential. In this formula, 
is phi (r prime) a known condition? If not, how can we use this theorem to get the 
potential as we have to know potential first to calculate the integral?
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One-on-one meetings

Tues   9 PM – Gao

Office hours

Tues 9 AM ????
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Poisson and Laplace Equations
We are concerned with finding solutions to the Poisson 
equation:

and the Laplace equation:

The Laplace equation is the “homogeneous” version of the 
Poisson equation.  The Green's theorem allows us to 
determine the electrostatic potential  from volume and surface 
integrals:
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Poisson equation -- continued
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General comments on Green’s theorem
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This general form can be used in 1, 2, or 3 dimensions.   In 
general, the Green's function must be constructed to satisfy 
the appropriate (Dirichlet or Neumann) boundary conditions.  
Alternatively or in addition, boundary conditions can be 
adjusted using the fact that for any solution to the Poisson 
equation,                 other solutions may be generated by use 
of solutions of the Laplace equation
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Question -- We use the Green theorem to get the potential. 
In this formula, is phi (r prime) a known condition? If not, 
how can we use this theorem to get the potential as we 
have to know potential first to calculate the integral?

Comment – You are correct;   it is assumed that we know 
the potential or its derivative on the boundary.    As 
mentioned previously,   in general we cannot know both or 
in other ways over specify the problem.
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“Derivation” of  Green’s Theorem
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Your question -- When we choose f and g to be Phi and 
G, where does that intuition come from in plugging into 
divergence theorem?

Comment – I assume this was the genius of Green 
(perhaps with the help of Jackson).

Another comment – Ideally the Green’s function will be 
designed to take into account the boundary conditions 
for your given problem.    In some cases, further 
adjustments may be needed.
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“Derivation” of  Green’s Theorem
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Laplace
Poisson
Poisson
Laplace
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Comment about the example and solution

This particular example is one that is used to model 
semiconductor junctions where the charge density is 
controlled by introducing charged impurities near
the junction. 

The solution of the Poisson equation for this case can 
be determined by piecewise solution within each of the 
four regions.   Alternatively, from Green's theorem in 
one-dimension, one can  use  the Green's function 
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Notes on the one-dimensional Green’s function
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Construction of a Green’s function in one dimension
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Summary 
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One dimensional Green’s function in practice
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This expression gives the same result as previously 
obtained for the example ρ(x) and more generally is 
appropriate  for any neutral charge distribution.
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Question -- On slide 16, how do we know which 
one of x and x' is the x_< term?
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Constant shift to
allow (0) 0.Φ =
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