PHY 712 Electrodynamics
10-10:50 AM MWF Online

Plan for Lecture 3:
Reading: Chapter 1 in JDJ

1. Review of electrostatics with one-
dimensional examples

2. Poisson and Laplace Equations

3. Green’s Theorem and its use in
electrostatics
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In this lecture, we will return to the materials presented in our textbook. Some of the
ideas were presented in PHY 711.



PHY 712 Electrodynamics

[MWF 10-10:50 PM [Online http://www.wfu.edu/~natalie/s21phy712/ |

[Instructor: Natalie Holzwarth [Office:300 OPL|e-mai|:natalie@wfu.edu‘

Course schedule for Spring 2021

(Preliminary schedule -- subject to frequent adjustment.)

Lecture date JDJ Reading | Topic HW Due date

[ Wed: 01/27/2021 Chap. 1 & Appen. |Introduction, units and Poisson equation #1 01/29/2021
2 [Fri: 01/29/2021 Chap. 1 IEIectrostalic energy calculations #2 02/01/2021
3 [Mon: 02/01/2021 Chap.1 &2 Electrostatic potentials and fields #3 02/03/2021
4 |Wed: 02/03/2021 Chap.1-3 Poisson's equation in 2 and 3 dimensions
5 [Fri: 02/05/2021 Chap. 1-3 Brief introduction to numerical methods
6 [Mon: 02/08/2021 Chap.2& 3 Image charge constructions
= ar + Amiaminans A ~n oA [~ v - f ' o
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Updated schedule. Note new homework assignment which follows from today’s lecture.



Februrary 1, 2021

PHY 712 — Problem Set #3

Continue reading Chaper 1 & 2 in Jackson

1. Consider a one-dimensional charge distribution of the form:

0 for z<—a/2
p(r) =4¢ poxfa for —a/2 <z <a/f2
0 for x>a/2,

where pg and a are constants.

(a) Solve the Poisson equation for the electrostatic potential ®(x) with the
boundary conditions ®(—a/2) = 0 and %2 (—a/2) = 0.

(b) Find the corresponding electrostatic field E(z).

(c¢) Plot ®(x) and E(z).

(d) Discuss your results in terms of elementary application of Gauss’s Law
arguments.
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Content of IHW 3.



Poisson and Laplace Equations
We are concerned with finding solutions to the Poisson
equation:

r
€y
and the Laplace equation:

VO, (r)=0

The Laplace equation is the “homogeneous” version of the
Poisson equation. The Green's theorem allows us to
determine the electrostatic potential from volume and surface
integrals: 1

D(r)= ELCZ%'/}@' NG(r,r')+

%j d*r'[G(r,r)\V'D(r') - D(r)\V'G(r,r)]-F'.
T S
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Here we start our systematic derivations of solution of the electrostatic equation for a
potential with a given charge source and the associated homogeneous equation.



Poisson equation -- continued

Note that we have previously shown
that the differential and integral forms

of Coulomb's law is given by:

vor)=-LY  and o) =— [ L)
& drg, " |r—r’|

Generalization of analysis for non-trivial boundary conditions:

@(r):ﬁ [, dr pe)Grr)+

%j d’r'[G(r,r)V'Or) - D(r")V'G(r,r)]-F"
T N
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What we discussed last week is still true for isolated charges. Now we consider the case
where the charges are within a volume V whose surface may have some imposed
restrictions (boundary condisions).



General comments on Green’s theorem

1 r ’ ’
d’r p(r )G(r,r) +
P [ @ p)G(r,r)
L LN [Gr.r W) -dr)VG(rr)|-F.
dr 7S

D(r) =

This general form can be used in 1, 2, or 3 dimensions. In
general, the Green's function must be constructed to satisfy
the appropriate (Dirichlet or Neumann) boundary conditions.
Alternatively or in addition, boundary conditions can be
adjusted using the fact that for any solution to the Poisson
equation, (I)P(r) other solutions may be generated by use
of solutions of the Laplace equation

O(r) =D ,(r)+ CD,(r),for any constant C.
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Comment about how the boundary conditions may or may not work.



“Derivation” of Green’s Theorem
o(r)
&)

Green's relation:  V°G(r,r) = —475°(r — ).

Poisson equation: V’®(r) = —

Divergence theorm: J.d3r V-A= (ﬁdzr A-r
Vv N

Let A=/f(r)Vg(r)-g(r)Vf(r)
la’}r V- (/£ (r)Ve(r)-g(r)Vf(r))

¥

1 &r (£(r)Ve(r)-g(r)V?/(r))

N
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Cj)dzr (f(r)Vg(r)—g(r)Vf(r))-f‘

Here we derive the equations stated on the previous slides.



“Derivation” of Green’s Theorem
o(r)
&)

Green's relation:  V°G(r,r) = —475°(r — ).

Poisson equation: V’®(r) = —

.Vfd3r (f(r)Vzg(r)—g(r)sz(r)) =<]Sd2r (f(r)Vg(r)—g(r)Vf(r))-f'

f(r)o o(r) g(r)=G(r,r")
1 3.0 ' '
CD(r):FgOJ.Vd ' p(rG(r,r')+

%J. d’r'[G(r,r\V'Or)—d(r")V'G(r,r)]-F"
T N
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Derivation continued.



Example of charge density and potential varying in one dimension

Consider the following one dimensional charge distribution:

0 forrx < —a
—po for—a <z <0
+py for0<x<a
0 forz > a

‘We want to find the electrostatic potential such that

P2(x) _ pla)

dx? €0 !

®
with the boundary condition ®(—oc) = 0 and (2—(—00) =0
x
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Simple one-dimensional example of a particular charge distribution.



Electrostatic field solution

The solution to the Poisson equation is given by:

0 forr < —a
(2) 2> (z +a)? for—a <z <0
) =
— £ (z—a)?+ 22 for0<z<a
2eq £p
2o forz >a

0 forr < —a
2o ,

—B(rta) for—a<xr<0

E(x) = co ( )

Lo(px—a) for0<zxz<a

€0

0 forz > a
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Resultant potential and electric field.
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Graph of results for this example
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Comment about the example and solution

This particular example is one that is used to model
semiconductor junctions where the charge density is
controlled by introducing charged impurities near
the junction.

The solution of the Poisson equation for this case can
be determined by piecewise solution within each of the

four regions. Alternatively, from Green's theorem in
one-dimension, one can use the Green's function

D(x) = LJ‘_OO G(x,x")p(x")dx' where G(x,x")=4rx_
dre, 7

x_ should be take as the smaller of x and x'.

Comment and generalization.
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Notes on the one-dimensional Green’s function

The Green's function for the one-dimensional
Poisson equation can be defined as a solution to
the equation: V’G(x,x") = —415(x —x")
Here the factor of 4 is not really necessary, but

ensures consistency with your text's treatment of

respect to x.
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the 3-dimensional case. The meaning of this expression

1s that x' 1s held fixed while taking the derivative with

Some details.
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Construction of a Green’s function in one dimension

Consider two independent solutions to the homogeneous equation
Vi4(x)=0
wherei=1o0r 2. Let

G(x.x) =4§¢1<x<)¢2(x>>.

This notation means that x_ should be taken as the

smaller of x and x' and x_ should be taken as the larger.

W is defined as the "Wronskian":
do (x do,(x
=g (- g 2,
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Details continued for one dimensional Poisson equation.

14



Summary

V’G(x,x") =415 (x — x")
Glx) = 4 (5.0

_ d¢ (x) _ dg,(x)
W= Py 9, (x)— @ (x) I

dG(x,x") dG(x,x")

dx dx

=-4r

x=x'—€

x=x'+e€
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Summary for one dimensional Poisson equation.



One dimensional Green’s function in practice

jz G(x,x") p(x")dx’

P(x) = 4re
:ﬁgo{r@ G(x,x") p(x")dx'+ f G(x,x") p(x")dx '}

For the one-dimensional Poisson equation, we can construct

D(x)= gi{j;x'p(x "dx '+ xjj p(x ')dx'}.

G(x,x")=4nx,_

This expression gives the same result as previously
obtained for the example p(x) and more generally is
appropriate for any neutral charge distribution.
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the Green's function by choosing ¢ (x)=x and ¢,(x) =1 =1:

Some general comments.
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Orthogonal function expansions and Green’s functions

Suppose we have a “complete” set of orthogonal functions {u,(z)} defined in the
interval 1 < x < 29 such that

l T S

1
We can show that the completeness of this functions implies that

oo

Z Un (2)un(z') = 6(x — ).

n=1

This relation allows us to use these functions to represent a Green’s function for our

system. For the 1-dimensional Poisson equation, the Green’s function satisfies

82
—G(z,z) = —4nd(x — z').
Z 6a.a') = —tmile — )
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Now we will discuss another approach to analyzing Green’s functions based on expansion
in terms of a complete set of orthogonal functions.



Orthogonal function expansions —continued

Therefore, if
dQ
@un(r) = —apuy (),
where {u,,(z)} also satisfy the appropriate boundary conditions, then we can write 1
Green’s functions as

Glaa!) = 4y l@inl),
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Some details for orthogonal function expansion method.
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Example

For example, consider the example discussed earlier in the interval —a < z < a with

0 forx < —a
—po for—a <ax <0

plz) = (24)
+po for0<z<a

0 forz > a

We want to solve the Poisson equation with boundary condition d®(—a)/dx = 0 and

d®(a)/dz = 0. For this purpose, we may choose

o Jod= \/gsin (W} . 25)

The Green’s function for this case as:

G(z,z') = L i - (IQn;j”) - ([znz‘ljm’) . (26)

2
a
% ( 2n+1 Tl")
2a
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Application to our example.
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Example — continued
q Constant shift to
u o sin En-;-l m 1 allow ®©(0)=0.

(I)(.'E) - p(] a =

€0 = ([271 + 1]7? 2
it
0.8
0.6

c
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Graph of potential (green) and expansion for a few terms. Note that it was necessary to

shift the potential by a constant.
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