PHY 712 Electrodynamics
10-10:50 AM MWF Online
Plan for Lecture 4:

Reading: Chapter 1 -3 in JDJ
Electrostatic potentials

1. One, two, and three dimensions
(Cartesian coordinates)

2. Mean value theorem for the
electrostatic potential
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In this lecture, we will continue to develop solution methods for solving electrostatic
problems.
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Tomorrow’s colloquium



PHY 712 Electrodynamics

IMWF 10-10:50 PM Online| http://www.wfu.edu/~natalie/s21phy712/

[Instructor: Natalie Holzwarth Office:300 OPL

e-mail:natalie@wfu.edu ‘

Course schedule for Spring 2021

(Preliminary schedule -- subject to frequent adjustment.)

’7 Lecture date JDJ Reading Topic HW Due date
’T Wed: 01/27/2021 |Chap. 1 & Appen. Introduction, units and Poisson equation #1 01/29/2021
’T Fri: 01/29/2021  |Chap. 1 Electrostatic energy calculations #2 02/01/2021
’3_ Mon: 02/01/2021 |Chap. 1 &2 Electrostatic potentials and fields #3 02/03/2021
|T Wed: 02/03/2021 |Chap.1-3 Poisson's equation in 2 and 3 dimensions #4 02/05/2021
’5_ Fri: 02/05/2021 |Chap.1-3 Brief introduction to numerical methods
’6_ Mon: 02/08/2021 (Chap.2 & 3 Image charge constructions
= 1 es + Aamtsmmmmnma = Pg—— —~ .- 0 . 0 - .
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Updated schedule




Poisson Equation

V2O ,(r) = - p(r)
€0

Solution to Poisson equation using Green's function G(r,r'):

1
d(r)=——o/| d’r' p(r"G(r,r") +
(r) WOJV r p(E)G(r,r)

4LJ. d’r'[G(r,r\V'O(r") - O(r)V'G(r,r")]- 1.
T N
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Review of the general methods for solving the Poisson equation in various dimensions and
geometries.



Poisson equation for one-dimensional system
dZCDP(x) __ p(x)
dx’ &

Example solution:
D, (x)= L j " G(x,x") p(x")dx'+ C, + C,x
dre, *—

where G(x,x") =4xx_ where x_ is the smaller of x and x";

C, and C, are constants.

Check:
D, (x) :gi{ [ x' oG+ x j:’ p(x')dx'} +C, +Cyx
0
2
dq)P(x) :ij p(xv)dx|+C2 = d CDPZ(X) :_p(-x)
dx &y " dx &
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For one Cartesian dimension — reviewing previously discussed results.



General procedure for constructing Green'’s function for one-
dimensional system using 2 independent solutions of the
homogeneous equations

Consider two independent solutions to the homogeneous equation
Vi (x)=0

wherei=1or2. Let

Glx) =2 (x ).

This notation means that x_ should be taken as the

smaller of x and x' and x_ should be taken as the larger.

dg(x) , o dd(x)
5 P-a0— —.

"Wronskian": W =

Beautiful method; but only works in one dimension.
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Some details



Orthogonal function expansions and Green’s functions

Suppose we have a “complete” set of orthogonal functions {u,(z)} defined in the
interval 1 < x < 29 such that

T2
f W OB ) W () '8 =0
T
We can show that the completeness of this functions implies that

oo

Z Un (2)un(z') = 6(x — ).

n=1

This relation allows us to use these functions to represent a Green’s function for our

system. For the 1-dimensional Poisson equation, the Green’s function satisfies

82
—G(z,z) = —4nd(x — z').
Z 6a.a') = —tmile — )
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Review of orthogonal function expansions.



Orthogonal function expansion -- continued

Suppose the orthogonal functions satisfy an eigenvalue equation:
2

—u,(x)=-a,u,(x)

dx

where the functions u, (x) also satisfy the appropriate boundary

conditions, then we can construct the Green's function:
u (u (x'
G(x,x") = 4”ZM'

a
Check:

n

—a,u,(%))u, (x") _
a

= —47[2 u,(x)u,(x")

=—47z5(x —x")

d’ ,
ﬁG(x,x )= 47zZn:(

n
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Construction of Green’s function for one dimensional case.



Example
For example, consider the previous example in the interval

—a<x<a:
0 for x<—a
-p, for —a<x<0
p(x) =
+p, for 0<x<a
0 for x>a

We want to solve the Poisson equation with boundary condition
d®(-a)/dx=0and d®(a)/dx=0. We may choose

1 . ([2n+1 . .
u,(x)= \/: sin ([n;ﬂj and the corresponding Green's function
a a

. ([2n+1zx) . ([2n+1]7x
Ap & 1n(2ajsm(aJ
G(x,x)=—Y_

a n-o [27’1"1‘1]72' :
2a
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Reviewing our “favorite” example.



Example -- continued
This form of the one-dimensional Green's function only allows us to find a

solution to the Poisson equation within the interval —a < x < a from
1

D(x) =
) 4re,

[’ dx' G(x,x')p(x')+C,

b

([Zn + l]ﬂxj
_ P9 6S 2 ), 1
== 16; n+llzy 2

choosing C, so that ®(—a) = 0.

0 for x<-a

2o (x4 ay? for —a<x<0
80

Exact result: ®(x)= —&(x )+ 0,4 for 0<x<a

2¢, &,
&az for x>a
80
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Some details.



Example -- continued

. ([2n+1]7rx)
5 _ sin T,
o(x) =22 | 163 LI/
€ — ([2n+1]7) 2

/
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Summary.
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Orthogonal function expansions in 2 and 3 dimensions

F(r)  FD(r) D) _

VO(r) = o P —p(r)/€,.

Let {un (x)} , {vn ( y)} , {wn (Z)} denote complete orthogonal

function sets in the x, y, and z dimensions, respectively. The

Green's function construction becomes:

G(xax’: yoy': Z,Z') = 47[2 ul (x)ul(x )Vm (y)vm (y )Wn (Z)Wn (Z )
Imn al + ﬁm + 7/;1

b

where
2 2 2

d d d
) =@ (0, S, () =P, and S (2)= 0, ()

(See Eq. 3.167 in Jackson for example.)

02/03/2021 PHY 712 Spring 2021 -- Lecture 4 12

Extension of the ideas to multiple dimensions.



Details of a two-dimensional example --

( )
la
Two dimensional box with sides a and b with boundary
conditions: @(0,y)=®(a,y)=®(x,0)=d(x,b)=0

V’D(r) = achgr) + aZQ)gr) =—p(r)/¢,.
y
G(X,X',y,y') — 47[% U ()C)l/ll (;l):yyg:)vm (y )’

d’ d’
where Wu, (x) =—ou,(x), va xX)==Bv,(»)
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Analyzing in detail the two dimensional case.

13



Two dimensional example continued --

a

Irrx

u,(x) = %sin[Tj v.(»)= %sin(

222w (2] (%)
w (), (x ), (P)v,, (¥
G x’xv’ , ' :472. l i m m
(6,x', 2, 1") ; p—y)

. (lzx . (lzx"\ . (mxy)\ . (mxy'
sin sin sin sin
_ 16 Z a a b b
mab <, 1Y (mY
— + -
a b
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Two dimensional case, using orthogonal functions in both x and y dimensions.
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Example two-dimensional system continued -- Ty o

dimensional box
with sides a and
b with boundary
conditions:
D(0,y)=d(a,y)=

\ | @(x,0)=d(x,b)=0
! a

1
O(r)=—[ d’r'p(r)G(r,r)+
e, Know this term=0
Don’t know this term now tnis term=
- 2.0 | [] n _ [} ] ' ‘A'
TGV E) - o) G(r )] £

=>By design G(r,r’) vanishes on boundary.
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Specific example.
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Example #1:  p(x,y) = p,sin (ﬂj sin (%)
a
Example #2:  p(x,y) = p,

D(r) = ﬁ jyd%' o(rG(r,r')

. (lrx . (Ixx"\ . (mxy)\ . (mxy'
sin sin sin sin
16 z a a b b
”ab Im / 2 m 2

—_ + N

a b

272
For example #1: ®(x,y) = foa—zbzsin (ﬂj sin (ﬂj
e (a”+b7) a b

For this case:

G(x,x,y,») =
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Two examples.
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Combined orthogonal function expansion and
homogeneous solution construction of Green’s function
in 2 and 3 dimensions.

An alternative method of finding Green's functions for a second order

ordinary differential equations (in 1 dimension) is based on a product of

two independent solutions of the homogeneous equation, ¢ (x) and ¢, (x):
4

iy
g

where x_ denotes the smaller of x and x".

G(x,x") = K¢ (x )¢y (x.), where K = %

dx

For the two and three dimensional cases, we can use this
technique in one of the dimensions in order to reduce the
number of summation terms. These ideas are discussed in
Section 3.11 of Jackson.
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Now consider using orthogonal function expansion in the x dimension and the
homogeneous solution construction in the y dimension.



Green'’s function construction -- continued
For the two dimensional case, for example, we can assume that the

Green's function can be written in the form:
2

d
G(x,x,y,y") = Z u,(x)u,(x"g,(y,»") where ?un (¥)=-a,u,(x)

The y dependence of this equation will have the required
2

behavior, if we choose: {—an + %} 8, (y,y') =—4rno(y - y'),
V

which in turn can be expressed in terms of the two independent

solutions v, (y) and v, (y) of the homogeneous equation:

d2
{W - an}vm (» =0,

and the Wronskian constant: K =

v, v,

vn _vn
dy 7 " dy
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Some details.
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0* , ,
{—an + ay—z} g,(v,y)=—4rmo(y-y),

. 4r
g,(,y)= s v, (v.)

n

dZ
where: {— -a, } v, () =0,

dy*
dv, dv,
and K =—v, —-v —
dy 7 "dy

For example, choose v, (v) = sinh(\/OTn y) and v, (y)= sinh(\/07n (b-y))

where K, = \/OTn sinh(\/a_nb)

using the identity: cosh(r)sinh(s) + sinh(7)cosh(s) = sinh(r + s)
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More details.
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Example:

( J
la
Two dimensional box with sides a and b with boundary
conditions: @(0,y)=d(a,y)=d(x,0)=d(x,b)=0
1
O(r)=——[ &’ p(r)G(r,r)+
aze Know this term
Don’t knw this term

4Lj 4 [G(r,r)W'D(r') - D)WV G(r,r)] §
T S

Glxx'y,y) = S, (O, (x ')2—”»»,11 Vv, ().

n
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More details.



Example:

‘. XN ’
la

Two dimensional box with sides a and b with boundary

conditions: @(0,y)=d(a,y)=d(x,0)=d(x,b)=0

For this type of problem, it is necessary to construct G(x,x",y,»")
so that it vanishes on the boundary:
G(x,x',y,0)=G(x,x", y,b) = G(x,0,y,y") = G(x,a,y,y") =0
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Checking boundary values.
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Gx ' yay) = Y, (0, (x '>j<—”vm v, ().

n

—u,(x)=-a,u,(x) where u (0)=u,(a)=0

=u,(x)= 2 sin (@j a, = (Ej
a a a
[57 - [%j } (5)=0
v, () =sinh (% yj v, () = sinh (%(b - y)j
K, = Esinh (n_zzbj

a a

02/03/2021
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More details.
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Green'’s function construction -- continued

G(x,x',y,y") =D u, (u, (XK, v, (v, ().

For example, a Green's function for a two-dimensional rectangular system

with 0 < x <a and 0 < y < b, which vanishes on the rectangular boundaries:

. sin(mjsin(nﬂx ]sinh (stinh(m(b — y>)j
G(x,x',y,y'):SZ a a a a .

n=! n sinh(nﬂbj
a

la
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Resultant effective Green’s function for this case.

23



l J

la

1
d(r)=——o | d’r' p(r"G(r,r") +
(r) WOJV p(r)G(r,r)

=0

1
—\ 47" [G(r.L. r)—O(r")\V'G(,r")|-r'
=[] T~ ()Y G(r,r)]

jsinh(n;(b - y>))

nsinh(nﬂbj
a
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. (nﬂx). (mzx‘j. (mry<
, sin| —— |sin sinh| ——=
' v a a a
G(x,x,y,y):8z
n=1

24

Checking boundary values.
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. (nxx) . (nxx'") . (n
, sinf —— |sin sinh
a a

G(x,x',,y") =8
n=l nsinh(

1
O(r)=——[ d’r' p(r)G(r,r)
dre, "
In this example, only n=1 contributes because
rdx'sin X Jsin| 222 | = gé‘,n
0 a a 2

D(x, y) = 220 a sin(ﬂjx
47e, 2sinh(za/b) a

{sinh (ijdy'sin(%y'jsinh (”—yj +s
a 0 a

272

When the dust clears: D(x,y)= 2o

02/03/2021 PHY 712 Spring 2021

Example:  p(x,y) = p,sin [ﬂ) sin [%j
a

i jsinh(m(b - y>)j
a a .

mbj

inh(ﬂﬁdy'sin(”—y')sinh(mj]
a)y b a

ab . (ﬂxj . [ﬂyj
——5——-sin| — |sin| —
€ m(a”+b") a b
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Application to previously discussed examples (also your homework examples).
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A useful theorem for electrostatics
The mean value theorem (Problem 1.10 in Jackson)

The “mean value theorem” value theorem (problem 1.10 of your textbook) states that the
value of ®(r) at the arbitrary (charge-free) point r is equal to the average of ®(r') over
the surface of any sphere centered on the point r (see Jackson problem #1.10). One way
to prove this theorem is the following. Consider a point r’ = r + u, where u will
describe a sphere of radius R about the fixed point r. We can make a Taylor series

expansion of the electrostatic potential ®(r’) about the fixed point r:

d(r+u) = (I)(I‘)+11-V‘I’(r)+%(U'V)2@(r)+%(U-V)g@(l‘)+%(U-V)4¢’(r)+' e
(1)

According to the premise of the theorem, we want to integrate both sides of the equation
1 over a sphere of radius R in the variable u:

2 +1
f ds, = R? [ doy, f dcos(f,). 2)
sphere 0 -1
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Changing gears slightly --  discussion of the mean value theorem for electrostatics.
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Mean value theorem — continued

We note that

27 +1
R? f doy f dcos(0,)l = 47 R?,
0 -1
2w =+1
32/ d¢u/ dcos(y)u-V =0,
R? f dbu f deos(0)(u - V)2 = 4”R
RQf ndqﬁuf dcos(0y)(u-V)? =
0 -1
Hzf dqt)u[ dcos(f,)(u-V)* =
0

Since V2@®(r) = 0, the only non-zero term of the average is thus the first term:

and
47rR

27
32[ d%f dcos(6,)®(r + u) = 4 R2®(r),

or

4w R2 4w R2

Since this result is independent of the radius R, we see that we have the theorem.

. 27 —+1 1
®(r) = H?f dqb.uf dcos(0,)®(r +u) = —f dS,®(r + u).
0 -1 sphere
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Some details
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Summary: Mean value theorem
B(r) = — [RdQ, d(r+u)
r)= r+u
ArR* !
7
r
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28

Summary of results.
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